PENGGUNAAN TRANSFORMASI WAVELET DALAM SISTEM PENGENALAN ISYARAT TANGAN DENGAN BEBERAPA KOMBINASI PRA PROSES
Keywords:
pengenalan isyarat tangan, transformasi wavelet, nearest neighbor, smoothing filter, histogram equalization, binerisasi, desaturasiAbstract
Isyarat tangan, sebagai salah satu bagian dari bahasa tubuh, dapat digunakan untuk berkomunikasi dengan mesin. Sebagai alat untuk berkomunikasi, isyarat tangan dapat diimplementasikan dalam berbagai aplikasi, contohnya socially assistive robotics, mendukung user interface mouse dengan komputer, remote control dalam permainan nintendo, asisten dari dokter bedah dan juga sebagai robot militer. Dalam penelitian ini, citra isyarat tangan digunakan sebagai representasi kode perintah untuk menjalankan suatu tugas tertentu. Sistem pengenalan isyarat tangan terdiri dari tahap pra proses dan metode Transformasi Wavelet. Pada tulisan ini, dilakukan penelitian untuk mencari kombinasi pra proses yang menghasilkan rata-rata keakuratan terbaik. Pra proses tersebut terdiri dari kombinasi beberapa proses seperti smoothing filter, histogram equalization, binerisasi, dan/atau desaturasi. Metode klasifikasi yang digunakan adalah nearest neighbor dengan jarak Euclidean. Sedangkan untuk menghitung rata-rata keakuratan digunakan 2-fold cross validation. Dari hasil eksperimen didapatkan bahwa jenis pra proses yang hanya terdiri dari proses desaturasi memberikan hasil rata-rata keakuratan terbaik, yaitu 78,32%.