Optimasi Durasi pada Sistem Irigasi Tetes dengan Sensor Kelembaban dan Suhu Tanah Menggunakan Logika Fuzzy Takagi-Sugeno

Authors

DOI:

https://doi.org/10.31358/techne.v24i1.562

Keywords:

Logika Fuzzy Takagi-Sugeno, Irigasi Tetes, Suhu Tanah, Kelembaban Tanah

Abstract

Aspek utama dari setiap budidaya tanaman adalah proses irigasi, yang harus dikelola dengan tepat. Salah satu metode penting yang banyak digunakan adalah irigasi tetes. Penelitian ini menggunakan metode logika fuzzy Takagi-Sugeno untuk mengoptimalkan durasi irigasi menggunakan sensor kelembaban tanah dan suhu pada sistem irigasi tetes. Data yang dihasilkan dari 10 set pengukuran dengan kelembaban tanah rata-rata 60,14%, suhu 32,84°C, dan durasi irigasi 321 detik. Metode logika fuzzy Takagi-Sugeno menganalisis data dan menghasilkan durasi irigasi yang optimal berdasarkan aturan fuzzy yang telah ditentukan. Hasil penelitian menunjukkan bahwa metode ini dapat menangani variabilitas kondisi lingkungan dengan menyesuaikan durasi irigasi sesuai dengan kebutuhan tanaman. Penerapan metode logika fuzzy Takagi-Sugeno pada sistem irigasi tetes otomatis ini telah meningkatkan efisiensi penggunaan air, mengurangi biaya operasional, dan mendukung keberlanjutan pertanian dalam inovasi pertanian modern. Namun, diperlukan penelitian lebih lanjut dengan data yang lebih luas dari berbagai kondisi lingkungan dan jenis tanaman untuk mendapatkan kesimpulan yang lebih akurat dan komprehensif.

Downloads

Download data is not yet available.

References

D. Mishra et al., "Automated Irrigation System-IoT Based Approach," Proceedings - 2018 3rd International Conference on Internet of Things: Smart Innovation and Usages, 2018. https://doi.org/10.1109/IOT-SIU.2018.8519886.

A. S. Astutik, "Perkembangan Sektor Pertanian Tanaman Pangan di Kabupaten Lamongan pada Masa Pemerintahan Bupati H. Masfuk Tahun 2000-2010," Avatara, vol. 5, no. 1, pp. 1559-1568, 2017.

H. A. Pamungkas and M. Munir, "Evaluasi Kesesuaian Lahan Untuk Tanaman Cabai Merah Pada Musim Hujan Di Kabupaten Lamongan, Jawa Timur," Jurnal Tanah dan Sumberdaya Lahan, vol. 5, no. 1, pp. 673-679, 2018.

Badan Pusat Statistik (BPS), "Produksi Tanaman Sayuran," 2022. https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html.

K. Nalendra and M. Mujiono, "Perancangan IoT (Internet of Things) Pada Sistem Irigasi Tanaman Cabai," Generation Journal, vol. 4, no. 2, pp. 61-68, 2020. https://doi.org/10.29407/gj.v4i2.14187.

A. A. Aprillya, M. R. Aprillya, and U. Chasanah, "Sistem Pendukung Keputusan Identifikasi Daerah Rawan Kekeringan Dengan Metode Fuzzy Analytical Hierarchy Process (Studi Kasus: Kabupaten Lamongan)," Jurnal Computer Science and Information Technology (CoSciTech), vol. 3, no. 2, pp. 159-167, 2022.

F. Suryatini, M. Maimunah, and F. I. Fauzandi, "Implementasi Sistem Kontrol Irigasi Tetes Menggunakan Konsep IoT Berbasis Logika Fuzzy Takagi-Sugeno," JTERA (Jurnal Teknologi Rekayasa), vol. 4, no. 1, pp. 115, 2019. https://doi.org/10.31544/jtera.v4.i1.2019.115-124.

F. Mahfud, H. Ardiansyah, and M. R. Aprillya, "Sistem Monitoring Kelembaban Tanah Dengan Sensor Soil Moisture Berbasis Internet of Things," Jurnal Informatika Polinema, vol. 10, no. 1, pp. 117-124, 2023. https://doi.org/10.33795/JIP.V10I1.1536.

A. E. Hamdaouy, I. Salhi, A. Belattar, and S. Doubabi, "Takagi-Sugeno Fuzzy Modeling for Three-Phase Micro Hydropower Plant Prototype," International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 17782-17792, 2017. https://doi.org/10.1016/j.ijhydene.2017.02.167.

E. S. Mohamed et al., "Smart Farming for Improving Agricultural Management," The Egyptian Journal of Remote Sensing and Space Science, vol. 24, no. 3, pp. 971-981, 2021. https://doi.org/10.1016/J.EJRS.2021.08.007.

F. R. Hariri, "Penerapan Metode Fuzzy Sugeno Dalam Pendaftaran Siswa Baru Di SDN Sonopatik 1 Nganjuk," Teknik Informatika, Universitas Nusantara PGRI Kediri, vol. 3, no. 1, pp. 41-46, 2016.

J. M. Mendel, "Fuzzy-Logic Systems for Engineering - a Tutorial," Proceedings of the IEEE, vol. 83, no. 9, pp. 1293, 1995. https://doi.org/10.1109/5.364485.

D. Upuy and A. H. Hiariey, "Comparison of Sugeno and Mamdani Fuzzy System Performance in Predicting the Amount of Virgin Coconut Oil (VCO) Production," JIKO (Jurnal Informatika dan Komputer), 2023. https://doi.org/10.33387/jiko.v6i3.7051.

T. Lee et al., "Development of Irrigation Schedule and Management Model for Sustaining Optimal Crop Production Under Agricultural Drought," Paddy and Water Environment, 2022. https://doi.org/10.1007/s10333-022-00911-9.

C. Jamroen et al., "An Intelligent Irrigation Scheduling System Using Low-Cost Wireless Sensor Network Toward Sustainable and Precision Agriculture," IEEE Access, 2020. https://doi.org/10.1109/access.2020.3025590.

J. Dari et al., "Exploiting High-Resolution Remote Sensing Soil Moisture to Estimate Irrigation Water Amounts Over a Mediterranean Region," Remote Sensing, 2020. https://doi.org/10.3390/rs12162593.

S. Wanniarachchi and R. Sarukkalige, "A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future," Hydrology, 2022. https://doi.org/10.3390/hydrology9070123.

P. He et al., "Soil Moisture Regulation Under Mulched Drip Irrigation Influences the Soil Salt Distribution and Growth of Cotton in Southern Xinjiang, China," Plants, 2023. https://doi.org/10.3390/plants12040791.

D. K. Widyawati and A. Ambarwari, "Fuzzy Logic Design to Control the Duration of Irrigation Time in the Greenhouse," IOP Conference Series: Earth and Environmental Science, 2022. https://doi.org/10.1088/1755-1315/1012/1/012086.

Y. Li et al., "Irrigation Has More Influence Than Fertilization on Leaching Water Quality and the Potential Environmental Risk in Excessively Fertilized Vegetable Soils," PLoS One, 2018. https://doi.org/10.1371/journal.pone.0204570.

S. Wahjuni, W. Wulandari, and M. Kholili, "Development of Fuzzy-Based Smart Drip Irrigation System for Chili Cultivation," Juita Jurnal Informatika, 2022. https://doi.org/10.30595/juita.v10i1.12998.

M. A. F. Malbog, "A Fuzzy Rule-Based Approach for Automatic Irrigation System Through Controlled Soil Moisture Measurement," International Journal of Advanced Trends in Computer Science and Engineering, 2020. https://doi.org/10.30534/ijatcse/2020/216922020.

B. Li, M. Shahzad, H. Khan, M. M. Bashir, A. Ullah, and M. Siddique, "Sustainable Smart Agriculture Farming for Cotton Crop: A Fuzzy Logic Rule Based Methodology," Sustainability, 2023. https://doi.org/10.3390/su151813874.

W. R. Mendes et al., "Development of a Fuzzy Variable Rate Irrigation Control System Based on Remote Sensing Data to Fully Automate Center Pivots," IEEE Transactions on Automation Science and Engineering, 2024. https://doi.org/10.1109/tase.2023.3322120.

M. Wang et al., "A Switched System Approach to Exponential Filtering Design for Takagi-Sugeno Fuzzy Systems with Sampled-data Measurements Subject to Packet Dropouts," International Journal of Robust and Nonlinear Control, 2022. https://doi.org/10.1002/rnc.6302.

Downloads

Published

17-06-2025

How to Cite

Ardiansyah, H., Shodiq, M., Mahbubillah, M. A., & Agustina, R. (2025). Optimasi Durasi pada Sistem Irigasi Tetes dengan Sensor Kelembaban dan Suhu Tanah Menggunakan Logika Fuzzy Takagi-Sugeno. Techné : Jurnal Ilmiah Elektroteknika, 24(1), 73–88. https://doi.org/10.31358/techne.v24i1.562

Issue

Section

Articles