Klasifikasi Penyakit Pneumonia menggunakan Metode Convolutional Neural Network (CNN)

Authors

  • Irfan Handy Office Universitas Merdeka Malang
  • Rahman Arifuddin Universitas Merdeka Malang
  • Basitha Febrinda Hidayatulail Universitas Merdeka Malang

DOI:

https://doi.org/10.31358/techne.v23i2.491

Keywords:

Keywords: Pneumonia, ResNet50, Chest x – ray, Classification Pneumonia, Automatic diagnosis, COVID-19

Abstract

Pneumonia is an acute lung infection that affects lung tissue. The disease can be caused by various pathogens such as viruses, bacteria, fungi, and others. COVID-19 pneumonia is a serious condition that requires special attention because of its contagious nature and its severe symptoms, including high fever, difficulty breathing, and lack of oxygen. Diagnosis usually depends on clinical symptoms and imaging techniques such as chest x-rays. With automatic classification technology, pneumonia detection becomes more efficient. The study used Convolutional Neural Network (CNN) with ResNet50 architecture to classify types of pneumonia, including viral pneumony and COVID-19, from chest x-rays. Research methods include literature reviews, data collection, pre-processing, modeling, training, testing, and evaluation using metrics such as accuracy, precision, recall, and F1 scores. Experiments with different epochs yield 99% accurate training data, 81% accurate validation data, and a lack of learning on models that influence accurability on validation.

Downloads

Download data is not yet available.

References

B. Nugroho and E. Y. Puspaningrum, “Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, pp. 533–538, 2021, doi: 10.25126/jtiik.2021834515.

N. A. Sam, Sumarni, M. Sabir, and N. Syamsi, “Pneumonia : Laporan Kasus,” J. Med. Prof., vol. 5, no. 2, pp. 146–153, 2023.

N. Abdillah, A. K. W. Hapantenda, A. Habib, and I. Listiowarni, “Klasifikasi Viral Pneumonia Mengunakan Metode Convolutional Neural Network Dan Support Vector Machine,” Konvergensi, vol. 18, no. 2, pp. 50–56, 2022, doi: 10.30996/konv.v18i1.6916.

M. Suyuti and E. Setyati, “Pneumonia Classification of Thorax Images using Convolutional Neural Networks,” J. Inf., vol. 5, no. 2, p. 62, 2020, doi: 10.25139/inform.v0i1.2707.

M. A. Wikanargo and A. P. Thenata, “Image Segmentation of Chest X-Rays for Abnormality Pattern Recognation in Lungs Using Fuzzy C-Means Method,” J. Terap. Teknol. Inf., vol. 2, no. 2, pp. 101–111, 2018, doi: 10.21460/jutei.2018.22.98.

S. Suprihanto, I. Awaludin, M. Fadhil, and M. A. Z. Zulfikor, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” J. Inform., vol. 9, no. 2, pp. 116–122, 2022, doi: 10.31294/inf.v9i1.13049.

I. M. D. Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 190–195, 2020, doi: 10.22146/jnteti.v9i2.66.

A. Raup, W. Ridwan, Y. Khoeriyah, S. Supiana, and Q. Y. Zaqiah, “Deep Learning dan Penerapannya dalam Pembelajaran,” JIIP - J. Ilm. Ilmu Pendidik., vol. 5, no. 9, pp. 3258–3267, 2022, doi: 10.54371/jiip.v5i9.805.

V. Praskatama, C. A. Sari, E. H. Rachmawanto, and N. Mohd Yaacob, “Pneumonia Prediction Using Convolutional Neural Network,” J. Tek. Inform., vol. 4, no. 5, pp. 1217–1226, 2023, doi: 10.52436/1.jutif.2023.4.5.1353.

L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indones. J. Stat. Its Appl., vol. 3, no. 3, pp. 331–340, 2019, doi: 10.29244/ijsa.v3i3.560.

M. F. D. Ryandra, “Perbandingan Arsitektur Resnet-50 dan Inceptionv3 dalam Klasifikasi Covid 19 Berdasarkan Citra X Ray,” p. 35, 2022, [Online]. Available: https://repositori.uma.ac.id/handle/123456789/17072%0Ahttps://repositori.uma.ac.id/j

spui/bitstream/123456789/17072/1/178160047 - Muhammad Farhan Dwi Ryandra - Fulltext.pdf

A. B. Setiawan and M. A. Ridlo, “Determining PID Parameters For Temperature Control System in Cavendish Banana Storage Room,” vol. 8, no. 1, pp. 15–23, 2024.

U. H. Zaini and A. Rabi, “Metode CNN Dan Metode Haar Cascade Untuk Mendeteksi Sepeda Motor Yang Melintasi Area Trotoar,” JEECOM J. Electr. Eng. Comput., vol. 5, no. 2, pp. 191–199, 2023, doi: 10.33650/jeecom.v5i2.6744.

Y. S. Pasaribu et al., “Rekomendasi Destinasi Wisata Kota Bandung Menggunakan Algoritma Collaborative Filtering Timotius Selar Sitompul,” J. Penelit. dan Karya Ilm., vol. 1, no. 6, 2023, [Online]. Available: https://doi.org/10.59059/mutiara.v1i6.736

W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naive Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.

Downloads

Published

29-11-2024

How to Cite

Office, I. H., Arifuddin, R., & Hidayatulail, B. F. (2024). Klasifikasi Penyakit Pneumonia menggunakan Metode Convolutional Neural Network (CNN). Techné : Jurnal Ilmiah Elektroteknika, 23(2). https://doi.org/10.31358/techne.v23i2.491

Issue

Section

Articles