Rancang Bangun Termometer Tubuh Digital Berbasis Sensor NTC W1209 10k

Authors

  • Hendi Handian Rachmat Institut Teknologi Nasional Bandung
  • Melati Dwi Ananda Institut Teknologi Nasional Bandung

DOI:

https://doi.org/10.31358/techne.v23i1.398

Keywords:

akurasi, durasi waktu pengukuran, resistansi, sensor NTC, termometer digital

Abstract

Pada paper ini dilakukan implementasi sensor NTC tipe W1209 10k yang memiliki kemasan ergonomis, kecil dan tahan air untuk digunakan sebagai sensor suhu pada termometer tubuh digital. Termometer ini dirancang dengan range suhu dari 32°C sampai dengan 42°C dengan ketelitian 0,1°C. Paper ini ditujukan untuk melakukan evaluasi karakteristik sifat resistansi sensor NTC tipe W1209 10k untuk range suhu tubuh manusia, durasi waktu pengukuran suhu, dan akurasi pengukuran suhu. Sistem termometer ini diimplementasikan dengan menghubungkan sensor NTC pada rangkaian Jembatan Wheatstone untuk mengkonversi perubahan resistansi menjadi perubahan tegangan differensial. Tegangan ini kemudian dikuatkan dengan penguat differensial op-amp untuk menyesuaikan dengan resolusi konversi ADC internal 10-bit yang dilakukan oleh mikrokontroler Arduino Nano. Nilai digital selanjutnya dihitung pada mikrokontroler untuk dapat menampilkan hasil suhu terukur. Dari hasil pengujian yang dilakukan terhadap media air untuk range suhu dari 28ºC sampai dengan 63°C, diperoleh nilai rata-rata resistansi dari 23 k? (± 0,02 k?) sampai dengan 9,1 k? (± 0,07 k?). Durasi pengukuran terbaik termometer dengan sensor NTC untuk pengukuran pada naracoba diperoleh selama dua menit. Adapun hasil pengukuran suhu dengan media air dan melalui tubuh pada bagian ketiak naracoba diperoleh bahwa rata-rata akurasi secara berturut-turut, yaitu 0,05°C (±0,03°C) dan 0,03°C (±0,03°C).

Downloads

Download data is not yet available.

References

T. Tamura, M. Huang, T. Togawa, “Current developments in wearable thermometers,” Adv. Biomed. Eng., 7, 88–99, 2018. Doi: 10.14326/abe.7.88.

W. Chen, “Thermometry and interpretation of body temperature,” Biomedical Engineering Letters, 9, 1, 3–17, 2019. Doi: 10.1007/s13534-019-00102-2.

C. G. Scully et al., “Skin surface temperature rhythms as potential circadian biomarkers for personalized chronotherapeutics in cancer patients,” Interface Focus, 1, 1, 48–60, 2011. Doi: 10.1098/rsfs.2010.0012.

I.A. Kamil, O. Adegbenro, “A linearized thermometer circuit employing a thermistor and a diode as probing elements,” African J. Eng. Res., 1, 1, 101–105, 2003.

K. T. Aminu et al., “NTC thermistor performance and linearization of its temperature-resistance characteristics using electronic circuit,” Int. J. Adv. Sci. Res. Eng., 06, 08, 35–49, 2020. Doi: 10.31695/ijasre.2020.33854.

S. S. Munifah, Wiendartun, A. Aminudin, “Design of temperature measuring instrument using NTC thermistor of Fe2TiO5 based on microcontroller ATmega 328,” J. Phys. Conf. Ser., 1280, 2, 2019. Doi: 10.1088/1742-6596/1280/2/022052.

K. T. Aminu et al., “NTC thermistor performance and linearization of its temperature-resistance characteristics using electronic circuit,” Int. J. Adv. Sci. Res. Eng., 06, 08, 35–49, 2020. Doi: 10.31695/ijasre.2020.33854.

D. Zhang, M. J. Shi, L. L. Chen, S. J. Ding, “Designing of thermistor digital thermometer based on unbalanced electric bridge,” Key Eng. Mater., 538, 133–137, 2013. Doi: 10.4028/www.scientific.net/KEM.538.133.

K. Esenowo Jack, E. O. Nwangwu, I. Agwu Etu, E. U. Osuagwu, “A simple thermistor design for industrial temperature measurement,” IOSR J. Electr. Electron. Eng., 11, 05, 57–66, 2016. Doi: 10.9790/1676-1105035766.

D. J. Li, C. G. Xing, “Linearization of high precision human body temperature measurement circuit based on ntc thermistor,” Appl. Mech. Mater., 713–715, 381–384, 2015. Doi: 10.4028/www.scientific.net/amm.713-715.381.

G. J. Lavenuta, “Negative Temperature Coefficient Thermistors,” www.qtisensing.com, 2021. http://192.186.232.200/sites/default/files/specsheets/Negative-Temperature-Coefficient-Thermistors.pdf (accessed Jun. 10, 2021).

H. H. Rachmat, F. Ughi, “Pengembangan termometer suara bagi tuna netra berbasis mikrokontroler dengan sensor resistif,” J. Itenas Rekayasa, 14, 2, 49–59, 2010.

Multan Electronics, “1M W1209 Temperature Sensor Probe Wire NTC,” 2022. https://www.multanelectronics.com/product/1m-thermistor-temperature-sensor-waterproof-probe-wire-ntc-10k/

M. D. Ananda, H. H. Rachmat, “Evaluasi Karakteristik Resistansi Sensor NTC W1209 10K,” 2021 Pros. Disem. FTI Gen., 0, 0, 1–10, 2021.

L. M. Adewale, T. S. Aina, A. Emmanuel, O. O. Akinte, “Smart digital thermometer for Covid-19 detection,” Int. J. Res. Eng. Sci., 10, 3, 16–20, 2022.

S. Khan et al., “Comparative accuracy testing of non-contact infrared thermometers and temporal artery thermometers in an adult hospital setting,” Am. J. Infect. Control, 49, 5, 597–602, 2021. Doi: 10.1016/j.ajic.2020.09.012.

E. Angelini, S. Grassini, M. Parvis, L. Parvis, A. Gori, “Body temperature measurement from the 17th century to the present days,” IEEE Med. Meas. Appl. MeMeA 2020 - Conf. Proc., 2020, doi: 10.1109/MeMeA49120.2020.9137339.

H. Anuar, P. L. Leow, “Non-invasive core body temperature sensor for continuous monitoring,” 2019 IEEE Int. Conf. Sensors Nanotechnology, SENSORS NANO 2019, pp. 1–4, 2019, doi: 10.1109/SENSORSNANO44414.2019.8940040.

A. Chen, J. Zhu, Q. Lin, W. Liu, “A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions,” Int. J. Environ. Res. Public Health, 19, 23, 2022. Doi: 10.3390/ijerph192315883.

G. B. Dell’isola, E. Cosentini, L. Canale, G. Ficco, M. Dell’isola, “Noncontact body temperature measurement: Uncertainty evaluation and screening decision rule to prevent the spread of Covid-19,” Sensors (Switzerland), 21, 2, 1–20, 2021. Doi: 10.3390/s21020346.

P. Dolibog, B. Pietrzyk, K. Kierszniok, K. Pawlicki, “Comparative analysis of human body temperatures measured with noncontact and contact thermometers,” Healthc., 10, 2, 2022. Doi: 10.3390/healthcare10020331.

A. Dante, I. Franconi, A. R. Marucci, C. M. Alfes, L. Lancia, “Evaluating the Interchangeability of Forehead, Tympanic, and Axillary Thermometers in Italian Paediatric Clinical Settings: Results of a Multicentre Observational Study,” J. Pediatr. Nurs., 52, e21–e25, 2020. Doi: 10.1016/j.pedn.2019.11.014.

M. R. R. Akash, Yousuf, K. Shikder, “IoT Based Real Time Health Monitoring System,” Proc. Int. Conf. Res. Innov. Knowl. Manag. Technol. Appl. Bus. Sustain. INBUSH 2020, pp. 167–171, 2020, doi: 10.1109/INBUSH46973.2020.9392163.

Alamsyah, M. Subito, A. Amir, “Design System Body Temperature and Blood Pressure Monitoring Based on Internet of Things,” 2020 3rd Int. Conf. Inf. Commun. Technol. ICOIACT 2020, pp. 276–279, 2020, doi: 10.1109/ICOIACT50329.2020.9331968.

M. M. Ali, S. Haxha, M. M. Alam, C. Nwibor, M. Sakel, “Design of internet of things (IoT) and android based low cost health monitoring embedded system wearable sensor for measuring SpO2, heart rate and body temperature simultaneously,” Wirel. Pers. Commun., 111, 4, 2449–2463, 2020. Doi: 10.1007/s11277-019-06995-7.

M. A. Al-Sheikh, I. A. Ameen, “Design of mobile healthcare monitoring system using IoT technology and cloud computing,” IOP Conf. Ser. Mater. Sci. Eng., 881, 1, 2020. Doi: 10.1088/1757-899X/881/1/012113.

G. A. Alcoran-Alvarez, M. B. Garcia, D. U. Alvarez, “Automated social distancing gate with non-contact body temperature monitoring using Arduino Uno,” Int. Res. J. Eng. Technol., 07, 07, 4351–4356, 2020 [Online]. Available: www.irjet.net

S. Blake et al., “Evaluation of noninvasive thermometers in an endoscopy setting,” Gastroenterol. Nurs., 42, 2, 123–131, 2019. Doi: 10.1097/SGA.0000000000000367.

S. S. Munifah, Wiendartun, and A. Aminudin, “Design of temperature measuring instrument using NTC thermistor of Fe2TiO5 based on microcontroller ATmega 328,” J. Phys. Conf. Ser., 1280, 2, 0–7, 2019. Doi: 10.1088/1742-6596/1280/2/022052.

A. A. Khan, R. Sengupta, “A linear temperature/voltage converter using thermistor in logarithmic network,” IEEE Trans. Instrum. Meas., 33, 1, 2–4, 1984. Doi: 10.1109/TIM.1984.4315140.

Arduino.cc, “Arduino Nano User Manual,” 2023. https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf

onsemi, “Single Supply Dual Operational Amplifiers,” www.onsemi.com, 2023. https://www.onsemi.com/pdf/datasheet/lm358-d.pdf

Hanson-Technology, “TP101-Thermometer,” 2022. https://www.handsontec.com/dataspecs/Instruments/TP101-Thermometer.pdf

Omron, “Termometer Omron MC-246,” 2022. https://www.galerimedika.com/termometer-alat-ukur-suhu-tubuh/termometer-omron-mc-246

Melexis, “MLX90614 family,” 2023. https://www.melexis.com/-/media/files/documents/datasheets/mlx90614-datasheet-melexis.pdf

A. Diamond, C. T. Lye, D. Prasad, D. Abbott, “One size does not fit all: Assuming the same normal body temperature for everyone is not justified,” PLoS One, 16, 2, 1–13, 2021. Doi: 10.1371/journal.pone.0245257.

E. Nurazizah, M. Ramdhani, A. Rizal, “Rancang Bangun Termometer Digital Berbasis Sensor Ds18B20 Untuk Penyandang Tunanetra,” e-Proceeding Eng., 4, 3, 3294, 2017.

Downloads

Published

20-04-2024

How to Cite

Rachmat, H. . H., & Ananda, M. D. (2024). Rancang Bangun Termometer Tubuh Digital Berbasis Sensor NTC W1209 10k. Techné : Jurnal Ilmiah Elektroteknika, 23(1), 21–38. https://doi.org/10.31358/techne.v23i1.398

Issue

Section

Articles