Bearing Fault Detection Menggunakan Metode Wavelet Berbasis Labview

Authors

  • Romdhoni Prodi Teknik Elektro, Fakultas Teknik, Universitas Sutomo, Tangerang
  • Mardiansyah Universitas Sutomo https://orcid.org/0000-0003-4622-079X
  • Heri Kusnadi Prodi Teknik Elektro, Fakultas Teknik, Universitas Sutomo, Serang

DOI:

https://doi.org/10.31358/techne.v22i1.340

Keywords:

bearing, wavelet, labview

Abstract

Untuk dapat mengetahui dan mendeteksi jenis dan tingkat kerusakan bearing pada motor induksi dapat dilakukan dengan menganalisis sinyal getarannya. Pada penelitian ini, akan dianalisis jenis kerusakan bearing yang diakibatkan oleh kerusakan lokal atau yang terdistribusi ditunjukan oleh adanya getaran dengan frekuensi tertentu yang muncul. Sedangkan tingkat kerusakan yang umumnya diketehui dari besarnya ampitude getarannya. Metode yang digunakan untuk mendeteksi kerusakan bearing adalah dengan mengukur karakteristik getaran mengunakan sensor accelerometer dan menggunakan analisis wavelet berbasis labview, dalam domain waktu maupun domain frekuensi yang terjadi pada arah putaran radial. Percobaan untuk mengetahui spektrum getaran akibat kerusakan bearing pada motor induksi dengan cara dimodifikasi atau sengaja dirusak pada bearing tersebut. Analisis perbandingan getaran antara bearing yang berkondisi baik dan yang dibuat cacat pada bagian inner race, outer race dan ball bearing  secara bertingkat sehingga dapat ditentukan jenis dan tingkat kerusakan pada bearing tersebut. Hasil penelitian menunjukan bahwa sinyal vibrasi yang dihasilkan dari getaran bearing yang baik mendekati harmonik (sinusoidal), sedangkan yang rusak sinyal getarannya berbentuk stokastik (random). Untuk menentukan jenis kerusakan inner race, outerrace dan ball bearing harus disinkronkan antara frekuensi getaran dan perhitungan yang berdasarkan data aquisi dari parameter bantalannya, yaitu diameter lintasan innering dan outering, jumlah ball bearing dan putaran poros.

Downloads

Download data is not yet available.

References

M. Pradeep et al 2019, “Recognition of fault and security of three phase induction motor by means of programmable logic controller”. IOP Conf. Ser.: Mater. Sci. Eng. 623 012017.

Saidur, R. (2010) A Review on Electrical Motors Energy Use and Energy Savings. Renewable and Sustainable Energy Reviews, 14, 877-898. https://doi.org/10.1016/j.rser.2009.10.018.

Nandi, S., Toliya, H. and Li, X. (2005) Condition Monitoring and Fault Diagnosis of Electric Motors—A Review. IEEE Transactions on Energy Conversion, 20, 719-729. https://doi.org/10.1109/TEC.2005.847955

Li, D.Z., Wang, W. and Ismail, F. (2015) A Spectrum Synch Technique for Induction Motor Health Condition Monitoring. IEEE Transactions on Energy Conversion, 30, 1348-1355. https://doi.org/10.1109/TEC.2015.2454440

Naha, A., et al. (2016) A Method for Detect Half-Broken Rotor Bar in Lightly Loaded Induction Motors Using Current. IEEE Transactions on Instrumentation and Measurement, 65, 1614-1625. https://doi.org/10.1109/TIM.2016.2540941.

Shenbo Yu and Renyuan Tang, "Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines," in IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 1335-1338, April 2006, doi: 10.1109/TMAG.2006.871637.

T. Asami and H. Miura, "Study of ultrasonic machining using longitudinal and torsional vibration," 2015 IEEE International Ultrasonics Symposium (IUS), 2015, pp. 1-4, doi: 10.1109/ULTSYM.2015.0527.

B. Li, Y. Wei, X. Mao, K. Mao, H. Liu and H. Tian, "A Novel Vibration Exciting Method for NC Machine Tools," 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, 2010, pp. 45-48, doi: 10.1109/ICSEM.2010.101.

.Shenbo Yu, Pingping Pan, Huijun Wang, Lixiang Chen and Renyuan Tang, "Investigation on noise and vibration origin in permanent magnet electrical machine for elevator," 2005 International Conference on Electrical Machines and Systems, 2005, pp. 330-333 Vol. 1, doi: 10.1109/ICEMS.2005.202540.

P. Han, G. Heins, D. Patterson, M. Thiele and D. M. Ionel, "Modeling of Bearing Voltage in Electric Machines Based on Electromagnetic FEA and Measured Bearing Capacitance," in IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 4765-4775, Sept.-Oct. 2021, doi: 10.1109/TIA.2021.3092700.

M. Singh and A. G. Shaik, "Location of Defective Bearing in Three-Phase Induction Motor Using Stockwell Transform and Support Vector Machine," 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), 2018, pp. 1-5, doi: 10.1109/EPETSG.2018.8658606.

B. Belkacemi and S. Saad, "Bearing various defects diagnosis and classification using super victor machine (SVM) method," 2021 International Conference on Information Systems and Advanced Technologies (ICISAT), 2021, pp. 1-7, doi: 10.1109/ICISAT54145.2021.9678444.

W. Feng, W. Yan, S. Wu and N. Liu, "Wavelet transform and unsupervised machine learning to detect insider threat on cloud file-sharing," 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), 2017, pp. 155-157, doi: 10.1109/ISI.2017.8004896.

A. K. Saydjari and D. P. Finkbeiner, "Equivariant Wavelets: Fast Rotation and Translation Invariant Wavelet Scattering Transforms," in IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2022.3165730.

.Q. Sun and R. Ji, "Flight characteristic analysis model based on QAR data, wavelet transform and machine learning," 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 2021, pp. 1256-1259, doi: 10.1109/ICCASIT53235.2021.9633598.

K. R. Asha, P. S. Tasleem, A. V. Ravi Kumar, S. M. Swamy and K. R. Rekha, "Real Time Speed Control of a DC Motor by Temperature Variation Using LabVIEW and Arduino," 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), 2017, pp. 72-75, doi: 10.1109/ICRAECT.2017.50.

D. Ursutiu, C. Samoila and V. Jinga, "Creative developments in LabVIEW student training: (Creativity laboratory — LabVIEW academy)," 2017 4th Experiment@International Conference (exp.at'17), 2017, pp. 309-312, doi: 10.1109/EXPAT.2017.7984399.

Downloads

Published

10-04-2023

How to Cite

Romdhoni, Mardiansyah, & Kusnadi, H. (2023). Bearing Fault Detection Menggunakan Metode Wavelet Berbasis Labview. Techné : Jurnal Ilmiah Elektroteknika, 22(1), 49–58. https://doi.org/10.31358/techne.v22i1.340

Issue

Section

Articles