Penghitung Jumlah Tumpukan dan Penentu Tipe Koin Berdasarkan Intensitas Cahaya Baris
DOI:
https://doi.org/10.31358/techne.v21i2.318Keywords:
stack counter, koin, intensitas cahaya, pengidentifikasi objek, pengenalan objekAbstract
Alat ukur yang dapat menghitung jumlah tumpukan barang secara otomatis dan cepat sangat dibutuhkan industri dan bisnis. Teknik menghitung jumlah koin pada umumnya menggunakan mesin yang secara fisik dapat merusak, dan menghasilkan polusi, dan jika mengandung virus dan bakteri dapat menyebarkan penyakit. Untuk itu pada makalah ini diusulkan sebuah penghitung jumlah dan tipe tumpukan koin dengan menggunakan intensitas cahaya baris sebagai pendeteksi objek. Tipe objek ditentukan dari lebar piksel dari iluminasi koin. Jumlah koin dapat dihitung berdasarkan objek yang telah ditentukan. Pada 70 sampel citra uang koin 1, 5, 10, dan 50 NTD, diperoleh akurasi mencapai 98,98%, dan berhasil menentukan koin dengan benar sebesar 88,6%.
Downloads
References
Z. Dai-Xian, "SIFT algorithm analysis and optimization," 2010 International Conference on Image Analysis and Signal Processing, 2010, pp. 415-419, doi: 10.1109/IASP.2010.5476084.
H. Bay, T. Tuytelaars, L.V. Gool, “SURF: Speeded Up Robust Features,” Computer Vision -- ECCV 2006, Springer, 2006, pp. 404-417.
T. Stahl, S. L. Pintea and J. C. van Gemert, "Divide and Count: Generic Object Counting by Image Divisions," IEEE Transactions on Image Processing, vol. 28, no. 2, pp. 1035-1044, Feb. 2019.
J.P.A. Hoekendijk, B. Kellenberger, G. Aarts, et al. "Counting using deep learning regression gives value to ecological surveys." Sci Rep 11, 23209 (2021).
R. Joseph, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,”arXiv, 2016. https://arxiv.org/abs/1506.02640 (Diakses terakhir 30 Maret 2022)
J. Huang et al., "Drone-Based Car Counting via Density Map Learning," 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 2020, pp. 239-242.
Jiajun Lu, Yi Xu and Xiaokang Yang, "Counting pedestrians and cars with an improved virtual gate method," 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, 2010, pp. V4-448-V4-452.
H. Zhou, L. Wei, M. Fielding, D. Creighton, S. Deshpande and S. Nahavandi, "Car park occupancy analysis using UAV images," IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 2017, pp. 3261-3265.
T. Moranduzzo and F. Melgani, "Automatic Car Counting Method for Unmanned Aerial Vehicle Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 3, pp. 1635-1647, March 2014.
Countthings, “Apps to Automate Your Counting,” Countthings, 2022. https://countthings.com/ (diakses tanggal 30 Maret 2022).
Google Play, “User Reviews,” Countthings, 2022. https://play.google.com/store/apps/details?id=com.dyve.countthings&showAllReviews=truehttps://countthings.com/ (diakses tanggal 30 Maret 2022).
R.C. Gonzalez, R.E. Woods, “Digital Image Processing 4th ED,” Pearson, 2018.
P. Cattin, "Digital Image Fundamentals," University of Basel. https://miac.unibas.ch/SIP/02-Fundamentals.html#(1) (Akses terakhir 10 Juni 2022)
C. Li, S. Ran and L. Lin, "Comparative Research of Dynamic Target Detection Algorithms Based on Static Background," 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 2021, pp. 2107-2112.
T. Huynh-The, O. Banos, S. Lee, B. H. Kang, E. -S. Kim and T. Le-Tien, "NIC: A Robust Background Extraction Algorithm for Foreground Detection in Dynamic Scenes," IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 7, pp. 1478-1490, July 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Darmawan Utomo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.