Klasifikasi Citra X-Ray Covid-19 Menggunakan Three-layered CNN Model
DOI:
https://doi.org/10.31358/techne.v21i2.316Keywords:
CNN, COVID-19, klasifikasi, deep neural network, X-rayAbstract
Tragedi Covid yang melanda dunia perlu mendapat solusi pendeteksian yang cepat untuk mempermudah pengobatannya. Metode tes PCR jumlah alatnya lebih sedikit dibandingkan dengan mesin X-ray di Indonesia. Oleh karena itu, metode pengklasifikasi gambar X-ray dapat digunakan sebagai solusi alternatif. Pada penelitian ini diusulkan penggunaan model CNN dengan tiga lapisan convolutional dan maxpooling. Dataset image yang digunakan memiliki 1000 image teridentifikasi Covid dan 3000 image sebagai normal. Hyperparameter tuning dilakukan dengan cara membandingkan beberapa kombinasi hyperparameter; learning rate, dropout rate dan density. Model terbaik yang didapatkan adalah model tiga lapisan neural network dengan learning rate = 0,001, density = 64 dan dropout rate = 0,7. Model ini memiliki rata-rata akurasi sebesar 96% dan jumlah parameter sebanyak 7,1% dibandingkan acuan.
Downloads
References
World Health Organization, “Pertanyaan dan jawaban: Bagaimana COVID-19 ditularkan?,” WHO, 2019. https://www.who.int/indonesia/news/novel-coronavirus/qa/qa-how-is-covid-19-transmitted (accessed Nov. 21, 2021).
J. Elliott et al., “Predictive symptoms for COVID-19 in the community: REACT-1 study of over 1 million people,” PLoS Medicine, vol. 18, no. 9, Sep. 2021, doi: 10.1371/journal.pmed.1003777.
Worldometer, “COVID-19 Coronavirus Pandemic,” Nov. 21, 2021. https://www.worldometers.info/coronavirus/ (accessed Nov. 21, 2021).
B. Christie, “Covid-19: Early studies give hope omicron is milder than other variants,” BMJ, vol. 375, 2021, doi: 10.1136/bmj.n3144.
V. Thakur and R. K. Ratho, “OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear,” Journal of Medical Virology. John Wiley and Sons Inc, 2021. doi: 10.1002/jmv.27541.
Dr. Fadhli Rizal Makarim, “Ketahui Perbedaan dari Swab Test Antigen dan PCR,” Halodoc, Sep. 27, 2021. https://www.halodoc.com/artikel/ketahui-perbedaan-dari-swab-test-antigen-dan-pcr (accessed Feb. 17, 2022).
R. Theodora, H. Hendsun, Y. Firmansyah, E. Destra, and D. Gosal, “Periodic Q-PCR or Chest X Ray - Which is more Important for Monitoring Post COVID-19 Infection Case? (Case Report Study),” 2021.
A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network,” Applied Intelligence, vol. 51, no. 2, pp. 854–864, 2021, doi: 10.1007/s10489-020-01829-7.
T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Computers in Biology and Medicine, vol. 121, p. 103792, 2020, doi: https://doi.org/10.1016/j.compbiomed.2020.103792.
V. Ayumi and I. Nurhaida, “Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network Article Info ABSTRAK,” JSAI: Journal Scientific and Applied Informatics, vol. 4, no. 2, 2021, doi: 10.36085.
T. Hinz, P. Barros, and S. Wermter, “The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks,” 2016, pp. 80–87. doi: 10.1007/978-3-319-44781-0_10.
R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights into Imaging, vol. 9, no. 4, pp. 611–629, 2018, doi: 10.1007/s13244-018-0639-9.
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” CoRR, vol. abs/2104.05314, 2021, [Online]. Available: https://arxiv.org/abs/2104.05314
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
R. Chauhan, K. Ghanshala, and R. Joshi, Convolutional Neural Network (CNN) for Image Detection and Recognition. 2018. doi: 10.1109/ICSCCC.2018.8703316.
P. Lakhani and B. Sundaram, “Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks,” Radiology, vol. 284, no. 2, pp. 574–582, Aug. 2017, doi: 10.1148/radiol.2017162326.
M. C. Chen et al., “Deep Learning to Classify Radiology Free-Text Reports,” Radiology, vol. 286, no. 3, pp. 845–852, Mar. 2018, doi: 10.1148/radiol.2017171115.
P. Mahesh, Y. G. Prathyusha, B. Sahithi, and S. Nagendram, “Covid-19 Detection from Chest X-Ray using Convolution Neural Networks,” Journal of Physics: Conference Series, vol. 1804, no. 1, p. 012197, 2021, doi: 10.1088/1742-6596/1804/1/012197.
C. W. Wu, “ProdSumNet: reducing model parameters in deep neural networks via product-of-sums matrix decompositions,” CoRR, vol. abs/1809.02209, 2018, [Online]. Available: http://arxiv.org/abs/1809.02209
F. Sultana, A. Sufian, and P. Dutta, “Advancements in Image Classification using Convolutional Neural Network,” May 2019, doi: 10.1109/ICRCICN.2018.8718718.
K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” ArXiv e-prints, Nov. 2015.
M. Ahmadi, S. Vakili, J. M. P. Langlois, and W. Gross, “Power Reduction in CNN Pooling Layers with a Preliminary Partial Computation Strategy,” in 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), 2018, pp. 125–129. doi: 10.1109/NEWCAS.2018.8585433.
H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Networks, a Review,” 2020.
Tawsifur Rahman, “Covid-19 Radiography Database,” Kaggle, 2021. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database (accessed Oct. 17, 2021).
K.-M. Koo and E.-Y. Cha, “Image recognition performance enhancements using image normalization,” Human-centric Computing and Information Sciences, vol. 7, no. 1, p. 33, 2017, doi: 10.1186/s13673-017-0114-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aaron Berliano Handoko, Ivanna Kristianti Timotius, Darmawan Utomo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.