Pembuatan Penakar Hujan Berbiaya Rendah Menggunakan Sensor Beban Berbasis Arduino Uno

Main Article Content

Agusta Kurniawan Indah Mulia Sabella Nisa Adelia Rifai Sigit Purwandika

Abstract

Telah dibuat penakar hujan dengan sistem timbangan berbasis arduino uno. Sensor beban (load cell) akan mengukur massa air hujan menggunakan prinsip jembatan wheatstone. Nilai massa air hujan akhirnya akan dikonversi menjadi nilai curah hujan. Pembuatan alat dilakukan dengan menghubungkan sensor beban dengan konverter ADC HX711 yang juga bekerja sebagai penguat, Arduino Uno untuk mengubah data yang dihasilkan sensor ke data curah hujan, dan MATLAB untuk menampilkan hubungan antara waktu dan curah hujan. Tahapan pembuatan penakar hujan terbagi menjadi perancangan bagian elektronika, pembuatan program pada Arduino Uno, pembuatan program pada MATLAB dan terakhir mengamati keluaran data curah hujan. Hasil pengujian menunjukkan masih ada perbedaan massa antara keluaran alat ukur penakar hujan dengan massa di neraca digital pada berbagai variasi curah hujan dari 1 mm hingga 100 mm. Massa air hujan terbaca sama antara neraca digital dan respon sensor load cell saat curah hujan 54 mm, yaitu saat menunjukkan massa 105 gram. Saat curah hujan di bawah 54 mm, massa neraca digital lebih besar daripada massa respon pada sensor load cell, kebalikannya saat curah hujan di atas 54 mm, massa neraca digital lebih kecil daripada massa respon pada sensor load cell.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] M. Hoffmann, R. Schwartengräber, G. Wessolek, and A. Peters, “Comparison of simple rain gauge measurements with precision lysimeter data,” Atmos. Res., vol. 174–175, pp. 120–123, 2016, doi: 10.1016/j.atmosres.2016.01.016.

[2] Wlnarto, R. Handoyo, and B. H. Priyambodo, “Rancang Bangun Alat Ukur Curah Hujan Elektronik,” Agritech, vol. 11, no. 3, pp. 31–40, 2007, doi: 10.22146/agritech.19225.

[3] WMO, Guide to meteorological instruments and methods of observation, 7th ed., vol. 8. Geneva, Switzerland: World Meteorological Organization, 2008.

[4] Č. Maksimović, L. Bužek, and J. Petrović, “Corrections of rainfall data obtained by tipping bucket rain gauge,” Atmos. Res., vol. 27, no. 1–3, pp. 45–53, 1991, doi: 10.1016/0169-8095(91)90005-H.

[5] P. Sypka, “Dynamic real-time volumetric correction for tipping-bucket rain gauges,” Agric. For. Meteorol., vol. 271, no. February, pp. 158–167, 2019, doi: 10.1016/j.agrformet.2019.02.044.

[6] V. S. Shedekar, K. W. King, N. R. Fausey, A. B. O. Soboyejo, R. D. Harmel, and L. C. Brown, “Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges,” Atmos. Res., vol. 178–179, pp. 445–458, 2016, doi: 10.1016/j.atmosres.2016.04.016.

[7] T. Shimizu, M. Kobayashi, S. Iida, and D. F. Levia, “A generalized correction equation for large tipping-bucket flow meters for use in hydrological applications,” J. Hydrol., vol. 563, no. June, pp. 1051–1056, 2018, doi: 10.1016/j.jhydrol.2018.06.036.

[8] R. Deidda, G. Mascaro, E. Piga, and G. Querzoli, “An automatic system for rainfall signal recognition from tipping bucket gage strip charts,” J. Hydrol., vol. 333, no. 2–4, pp. 400–412, 2007, doi: 10.1016/j.jhydrol.2006.09.011.

[9] K. A. Cornish and G. C. Green, “An economical recording tipping-bucket rain gauge,” Agric. Meteorol., vol. 26, no. 4, pp. 247–253, 1982, doi: 10.1016/0002-1571(82)90041-3.

[10] Z. K. Hussein, H. J. Hadi, M. R. Abdul-Mutaleb, and Y. S. Mezaal, “Low cost smart weather station using Arduino and ZigBee,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 1, pp. 282–288, 2020, doi: 10.12928/TELKOMNIKA.v18i1.12784.

[11] K. T. Nielsen et al., “Automated rainfall simulator for variable rainfall on urban green areas,” Hydrol. Process., vol. 33, no. 26, pp. 3364–3377, 2019, doi: 10.1002/hyp.13563.

[12] A. D. Ibrahim, H. Basarudin, A. F. Ramli, M. Yaakop, M. I. Sulaiman, and M. A. Abu, “Development of rain gauge using weight measurement for microwave network,” AIP Conf. Proc., vol. 2129, no. July, 2019, doi: 10.1063/1.5118134.

[13] B. Sevruk, “Adjustment of tipping-bucket precipitation gauge measurements,” Atmos. Res., vol. 42, no. 1–4, pp. 237–246, 1996, doi: 10.1016/0169-8095(95)00066-6.

[14] L. Luo et al., “Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China,” Atmos. Res., vol. 239, no. June 2019, p. 104895, 2020, doi: 10.1016/j.atmosres.2020.104895.

[15] H. Bergmann, H. Breinhälter, O. Hable, and R. Krainer, “Calibration of tipping bucket hyetographs,” Phys. Chem. Earth, Part C Solar, Terr. Planet. Sci., vol. 26, no. 10–12, pp. 731–736, 2001, doi: 10.1016/S1464-1917(01)95017-2.

[16] V. Vasvári, “Calibration of tipping bucket rain gauges in the Graz urban research area,” Atmos. Res., vol. 77, no. 1-4 SPEC. ISS., pp. 18–28, 2005, doi: 10.1016/j.atmosres.2004.12.012.

[17] S. Overgaard, A. H. El-Shaarawi, and K. Arnbjerg-Nielsen, “Calibration of tipping bucket rain gauges,” Water Sci. Technol., vol. 37, no. 11, pp. 139–145, 1998, doi: 10.2166/wst.1998.0454.

[18] M. Colli, L. G. Lanza, and P. W. Chan, “Co-located tipping-bucket and optical drop counter RI measurements and a simulated correction algorithm,” Atmos. Res., vol. 119, pp. 3–12, 2013, doi: 10.1016/j.atmosres.2011.07.018.

[19] M. Savina, B. Schäppi, P. Molnar, P. Burlando, and B. Sevruk, “Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall,” Rainfall Urban Context Forecast. Risk Clim. Chang., vol. 103, pp. 45–51, 2012, doi: 10.1016/j.atmosres.2011.06.010.

[20] J. M. Valdivia, K. Contreras, D. Martinez-Castro, E. Villalobos-Puma, L. F. Suarez-Salas, and Y. Silva, “Dataset on raindrop size distribution, raindrop fall velocity and precipitation data measured by disdrometers and rain gauges over Peruvian central Andes (12.0°S),” Data Br., vol. 29, p. 105215, 2020, doi: 10.1016/j.dib.2020.105215.

[21] B. Cardenas and M. D. Dukes, “Dry-Out Periods of Rain Sensors vs. Soil Dry-Out: Water Saving Potential and Recommendations,” Vadose Zo. J., vol. 17, no. 1, p. 170185, 2018, doi: 10.2136/vzj2017.10.0185.

[22] Q. Zhu et al., “Estimation of event-based rainfall erosivity from radar after wildfire,” L. Degrad. Dev., vol. 30, no. 1, pp. 33–48, 2019, doi: 10.1002/ldr.3146.

[23] J.-O. Park, S. Yoon, M. H. Na, and H.-C. Song, “The Effects of Air Pollution on Mortality in South Korea,” Procedia Environ. Sci., vol. 26, pp. 62–65, 2015, doi: 10.1016/j.proenv.2015.05.025.