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Abstract

Software defect prediction (SDP) is an important approach to improving software quality by
identifying modules that are prone to errors early on. However, traditional intra-project
defect prediction (IPDP) approaches are often not applicable to new projects due to limitations
in labeled training data. To address these limitations, Cross-Project Defect Prediction (CPDP)
emerges as an alternative solution by leveraging data from source projects to build prediction
models for target projects. Nevertheless, CPDP faces major challenges in the form of data
distribution mismatch and class imbalance across projects, which can significantly reduce
prediction accuracy. This study aims to evaluate the performance of several machine learning
algorithms in the CPDP scenario and analyze the impact of hyperparameter tuning on model
performance. Using the AEEEM (Automated Software Engineering and Empirical Methods)
dataset consisting of five open-source Eclipse projects Eclipse Apache Lucene (LC), Equinox
(EQ), Eclipse JDT Core (JDT), Plugin Development Environment atau Eclipse PDE Ul (PDE),
Mylyn (ML), experiments were conducted in a one-to-many CPDP scheme, where each
project alternately acted as the source and target project. Random Forest (RF), Category
Boosting (CatBoost), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM). Evaluations before and after the hyperparameter tuning process were
conducted using the PyCaret library, with evaluation metrics including Accuracy, Area
Under Curve (AUC), Recall, Precision, and F1-Score. The results show that RF consistently
performs as the best model, outperforming in 9 out of 20 prediction combinations, both before
and after tuning. CatBoost demonstrates stable performance and shows a significant
improvement after tuning, while SVM, which initially performed the worst, shows the
greatest improvement (6.39% increase in F1-Score), though it remains at the bottom. LR, on
the other hand, shows a slight decline in performance after tuning. Further analysis revealed
that combinations of projects with similar characteristics (such as LC — EQ, ML — EQ)
produced high performance, while pairs with very different data distributions (such as EQ —
ML, ML — LC) yielded low results, emphasizing the importance of domain similarity in
CPDP. This study confirms that CPDP can be effective if the right models and project pairs
are selected, and highlights the importance of hyperparameter optimization to improve
model generalization. These findings provide practical guidance for researchers and
practitioners in developing more reliable cross-project defect prediction systems, and open
up avenues for further research such as the application of transfer learning, domain
adaptation, and the integration of semantic or dynamic code features.
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Abstrak

Prediksi cacat perangkat lunak (Software Defect Prediction/SDP) merupakan pendekatan
penting untuk meningkatkan kualitas perangkat lunak dengan mengidentifikasi modul yang
rentan terhadap kesalahan sejak dini. Namun, pendekatan tradisional berbasis intra-project
defect prediction (IPDP) sering kali tidak dapat diterapkan pada proyek baru karena
keterbatasan data pelatihan berlabel. Untuk mengatasi keterbatasan ini, Cross-Project Defect
Prediction (CPDP) muncul sebagai solusi alternatif dengan memanfaatkan data dari proyek
sumber untuk membangun model prediksi pada proyek target. Meskipun demikian, CPDP
menghadapi tantangan utama berupa perbedaan distribusi data (data distribution mismatch)
dan ketidakseimbangan kelas antar proyek, yang dapat menurunkan akurasi prediksi secara
signifikan. Penelitian ini bertujuan untuk mengevaluasi kinerja beberapa algoritma machine
learning dalam skenario CPDP, serta menganalisis dampak hyperparameter tuning terhadap
performa model. Menggunakan dataset Automated Software Engineering and Empirical Methods
(AEEEM) yang terdiri dari lima proyek open-source Eclipse Apache Lucene (LC), Equinox (EQ),
Eclipse JDT Core (JDT), Plugin Development Environment atau Eclipse PDE UI (PDE), Mylyn
(ML), eksperimen dilakukan dalam skema one-to-many CPDP, di mana setiap proyek secara
bergantian berperan sebagai proyek sumber dan target. Random Forest (RF), Category Boosting
(CatBoost), Logistic Regression (LR), K-Nearest Neighbors (KNN), dan Support Vector Machine (SVM).
Evaluasi sebelum dan setelah proses hyperparameter tuning menggunakan library pycaret,
dengan metrik evaluasi meliputi Accuracy, Area Under Curve (AUC), Recall, Precision, dan F1-
Score. Hasil menunjukkan bahwa RF konsisten menjadi model terbaik, unggul dalam 9 dari
20 kombinasi prediksi, baik sebelum maupun setelah tuning. CatBoost menunjukkan kinerja
stabil dan mengalami peningkatan signifikan setelah tuning, sementara SVM yang awalnya
paling rendah menunjukkan perbaikan paling besar (6,39% peningkatan F1-Score), meskipun
tetap berada pada posisi bawah. LR justru sedikit menurun performanya setelah tuning.
Analisis lebih lanjut mengungkap bahwa kombinasi proyek dengan karakteristik serupa
(seperti LC — EQ, ML — EQ) menghasilkan performa tinggi, sedangkan pasangan dengan
distribusi data sangat berbeda (seperti EQ — ML, ML — LC) memberikan hasil rendah,
menegaskan pentingnya kesamaan domain dalam CPDP. Studi ini menegaskan bahwa CPDP
dapat efektif jika dipilih model dan pasangan proyek yang tepat, serta menyoroti pentingnya
optimisasi hiperparameter untuk meningkatkan generalisasi model. Temuan ini memberikan
panduan praktis bagi peneliti dan praktisi dalam mengembangkan sistem prediksi cacat
lintas proyek yang lebih andal, serta membuka arah penelitian lanjutan seperti penerapan
transfer learning, domain adaptation, dan integrasi fitur semantik atau dinamik kode.

Kata kunci: Cross-Project Defect Prediction (CPDP), Hyperparameter Tuning, Machine Learning,
PyCaret, Distribusi Data, Random Forest

1. Pendahuluan

Peningkatan kualitas perangkat lunak merupakan salah satu aspek penting dalam
siklus pengembangan sistem. Salah satu tantangan utama dalam hal ini adalah prediksi
cacat (defect prediction) atau bug yang muncul selama proses pengembangan dan penggunaan
aplikasi. Cacat perangkat lunak dapat menyebabkan gangguan fungsional, penurunan
kualitas layanan pengguna (user experience), serta meningkatnya biaya pemeliharaan [1].
Oleh karena itu, dibutuhkan pendekatan otomatis juga efektif dalam mengidentifikasi
modul-modul yang rentan terhadap cacat sebelum tahap produksi [2]. Biaya pengujian
perangkat lunak mencapai hampir separuh dari total biaya pengembangan, pengelolaan
sumber daya yang terbatas menjadi sangat krusial. Dalam hal ini, penerapan model
Software Defect Prediction (SDP) dapat membantu mengidentifikasi modul-modul yang
paling berisiko mengalami cacat sebelum pengujian dimulai [3]. Dengan demikian, alokasi
sumber daya untuk pengujian setiap modul dapat dioptimalkan.
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Dalam beberapa tahun terakhir, penerapan teknik machine learning telah menunjukkan
potensi yang signifikan dalam bidang prediksi SDP. Pendekatan berbasis model prediktif
memungkinkan identifikasi modul yang bermasalah dengan memanfaatkan fitur-fitur
kode seperti kompleksitas, ukuran file, dan jumlah revisi [4][5]. Namun, mayoritas
pendekatan tersebut dilakukan secara intra-project defect prediction (IPDP), sehingga kurang
efektif ketika diterapkan pada proyek baru dengan data pelatihan yang tidak tersedia.

Cross-Project Defect Prediction (CPDP) mengatasi keterbatasan data yang sering dihadapi
dalam model SDP tradisional. Namun, akurasi prediksinya masih belum optimal dalam
penerapan praktis karena adanya perbedaan distribusi data antara proyek sumber dan
proyek target [6][7]. Selain itu, kinerja CPDP juga dipengaruhi oleh masalah dimensi tinggi
pada fitur-fitur dalam dataset proyek sumber dan target, di mana beberapa fitur mungkin
tidak relevan atau mengandung outlier [8][9].

Untuk mengatasi keterbatasan tersebut, penelitian ini mengusung pendekatan CPDD,
di mana model pelatihan berasal dari proyek lain namun tetap memberikan performa
prediksi yang baik. Dengan menggunakan dataset Automated Software Engineering and
Empirical Methods (AEEEM) dan memanfaatkan library pycaret untuk mempercepat eksplorasi
dan evaluasi model, penelitian ini bertujuan untuk mengembangkan model SDP yang
dapat digunakan pada proyek yang berbeda dari proyek tempat data pelatihan dikumpulkan.
Model Klasifikasi dalam machine learning seperti Random Forest (RF), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Logistic Regression (LR) dan CatBoost Classifier (CatBoost)
merupakan model yang digunakan dalam penelitian ini yang mempunyai kemampuan
baik dalam menangani klasifikasi dengan data tidak seimbang dan mampu memberikan
hasil yang stabil [10][11].

Penelitian ini juga menerapkan library pycaret mulai dari preprocessing hingga menemukan
hasil, prediksi dilakukan dengan membandingkan data sebelum tuning dan sesudah
tuning. Metodologi ini mencakup langkah-langkah analisis data yang komprehensif,
penggunaan teknik-teknik machine learning atau kecerdasan buatan yang canggih, serta
evaluasi terhadap berbagai parameter yang relevan. Selain itu, akan dilakukan juga validasi
terhadap model klasifikasi yang dikembangkan untuk memastikan akurasi dan keandalannya
dalam mengidentifikasi risiko SDP dengan tingkat kepercayaan yang tinggi [12].

Hasil dari penelitian ini dapat memberikan kontribusi yang signifikan dalam upaya
prediksi defect atau non-defect pada perangkat lunak. Informasi yang diperoleh dari model
klasifikasi yang dikembangkan dapat dimanfaatkan oleh para pengembang software
untuk melakukan tindakan perbaikan yang tepat waktu dan tepat sasaran guna meningkatkan
efisien waktu pembuatan perangkat lunak.

Selain itu, hasil penelitian ini juga diharapkan dapat menjadi langkah awal bagi
pengembangan lebih lanjut terkait SDP secara real-time atau berkelanjutan, sehingga
upaya dalam pencegahan dan perbaikan dapat dilakukan secara proaktif dan efisien.
Dengan demikian, penelitian ini diharapkan dapat memberikan manfaat yang nyata
dalam meningkatkan kualitas sebuah perangkat lunak.

2.  Metode Penelitian

Diagram yang ditunjukan pada Gambar 1. Sebuah proses yang dilakukan pada
penelitian melalui beberapa tahapan terdiri dari preprocessing, pembuatan model hingga
pengujian model dengan proyek lain menggunakan library pycaret.
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Gambar 1. Metode Penelitian

Metode yang diusulkan untuk prediksi cacat perangkat lunak pada dataset AEEEM
yang terdiri dari lima proyek, diantaranya adalah EQ, ML, LC, JDT dan PDE. Pendekatan
CPDP yang diterapkan merupakan one to many, artinya dari 5 proyek pada dataset AEEEM
masing-masing saling melakukan testing. Contohnya proyek EQ akan dilakukan tes
dengan proyek JDT, ML, LC serta PDE dan di ulang kembali proyek JDT akan dilakukan
test dengan proyek EQ, ML, LC serta PDE dan terus sampai proyek akhir. Studi ini
bertujuan untuk menilai performa berbagai model machine learning dalam melakukan
prediksi cacat perangkat lunak. Evaluasi dilakukan menggunakan sejumlah metrik seperti
Accruacy, AUC, Recall, Presisi, dan F1-Score untuk memastikan hasil prediksi yang tepat
dan konsisten di berbagai proyek perangkat lunak [13]. Datasets dan code tersedia secara
publik https://github.com/rianhidyt/cpdp-aeeem.

2.1. Dataset AEEEM

Dataset ini dikompilasi oleh Marco D’Ambros dan rekan-rekannya, diterbitkan dalam
studi [6][14]. AEEEM berisi data dari 5 proyek perangkat lunak open-source yang
dikembangkan dibawah naungan Eclipse Fondation dengan total 5.371 data, mencakup:
Apache Lucene (LC) merupakan sebuah perpustakaan pencarian teks berbasis java, Equinox
(EQ) salah satu komponen framework eclipse yang bertindak sebagai waktu ketika program
sedang berjalan, Eclipse JDT Core (JDT) merupakan alat pengembangan java dalam eclipse
tools, Plugin Development Environment (PDE) atau Eclipse PDE Ul merupakan alat antarmuka
(User Interface) pengguna untuk pengembangan plugin eclipse dan Mylyn (ML) adalah alat
manajemen tugas dan produktivitas yang menghubungkan sistem pelacakan bug seperti
bugzilla ke dalam IDE Eclipse. Format yang digunakan pada dataset AEEEM adalah
Attribute-Relation File Format (ARFF), mendukung dengan alat pengolahan machine learning
[14][15]. Atribut dalam setiap dataset mencakup 61 metrik diantaranya terdapat kolom
class berisi label sebagai defect atau non-defect dengan jumlah persentase defect yang bervariasi
antara proyek. Variasi jumlah entries data setiap proyek ditunjukan pada Tabel 1 dan Tabel 2
berikut.

Tabel 1. Rincian Dataset AEEEM yang digunakan

Dataset Jumlah Modul Jumlah Fitur Defect Non-Defect Rasio Defect
LC 691 61 64 627 9.26%
EQ 324 61 129 195 39.81%
JDT 997 61 206 791 20.66%

PDE 1862 61 245 1617 13.16%
ML 1497 61 209 1288 13.96%
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Tabel 2. Rincian Dataset AEEEM yang digunakan

Aspek Deksripsi
Jumlah Dataset 5 (LC, EQ, JDT, PDE, ML)
Total Jumlah Data (Entries) 5.371

Jumlah Kolom (Fitur + Target)

62 (termasuk 61 fitur + 1 kolom target class)

Kolom Target

class (menunjukan status kecacatan modul)

Kode pada kolom class

b’0’ = Non=defect, b’1’ = Defect

Jumlah Modul Cacat (Defect) 853
Jumlah Modul Non-Cacat (Non-Defect) 4518
Rasio Cacat 15.88% (853 / 5.371)

Tipe Data Utama

float64 (numerik)

Missing Value

diperiksa — tidak ditemukan atau minimal (asumsi
data bersih)

Langkah Pra-Pemrosesan

1. Pengecekan struktur dataset (jenis data, entri,
atribut, tipe data)

2. Pengecekan nilai hilang (missing value)

3. Normalisasi data untuk mengatasi
ketidakseimbangan kelas

Tools Library

Python, PyCaret (untuk otomatisasi eksperimen dan
pra-pemrosesan)

Tujuan Normalisasi

meningkatkan kinerja model dengan mengurangi
dampak ketidakseimbangan data dan perbedaan
skala fitur

Distribusi Kelas

4000

3000 -

Jumlah

2000

1000 4

Class

Gambar 2. Distribusi atribut class defect dan non-defect

2.2. Preprocessing

Preprocessing dilakukan untuk memastikan data sudah bersih dari missing value dengan
dilakukan imputasi data menggunakan simpleimputer. Selanjutnya dilakukan cek data
kolom apakah ada yang hilang nilai (NaN) atau ada nilai yang belum numerik karena akan
menggangu proses modelling menjadi kurang baik[16]. Setelah penanganan nilai selesai
tahap berikutnya setup library pycaret dengan konfirgurasi pemilihan target kolom class,
tipe target binary, transformed data dari 691 menjadi 1080 bertujuan meningkatkan kualitas
data secara keseluruhan, pembagian data train dan test dengan proporsi 80/20%. Mengaktifkan
fitur fix imbalance dengan metode Synthetic Minority Over-sampling Technique (SMOTE) dan
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fitur normalized dengan metode zscore bertujuan menghilangkan duplikasi atau data yang
double. Terakhir menerapkan StratifiedKFold generator untuk mendukung validasi silang
meningkatkan generalisasi dan mencegah overfitting [17].

2.3. Run Model dan Create Model

Dalam pycaret, fungsi create_model dan best_model (melalui compare_models) memiliki
peran penting dalam alur kerja pembangunan model machine learning. Fungsi create_model
bertujuan untuk membuat dan melatih model spesifik, seperti RF, KNN, SVM, LR dan
CatBoost menggunakan data yang telah disiapkan melalui setup(). Fungsi ini memungkinkan
evaluasi awal performa model melalui validasi silang, seperti StratifiedKFold, dan memberikan
fleksibilitas untuk eksperimen dengan hyperparameter atau skema validasi [18][19]. Di sisi
lain, best_model yang dihasilkan dari compare_models bertujuan untuk membandingkan berbagai
algoritma secara otomatis dan memilih model dengan performa terbaik berdasarkan metrik
tertentu, seperti akurasi atau F1-Score. Model terbaik ini kemudian dapat digunakan untuk
prediksi, tuning lebih lanjut, atau deployment. Keduanya saling melengkapi: create_model
ideal untuk analisis mendalam pada satu model, sementara best model mempercepat proses
pemilihan model optimal dalam waktu singkat [20].

2.4. Prediksi Data

Proses prediksi data dalam eksperimen CPDP dilakukan dengan memanfaatkan
model yang dilatih pada data proyek sumber yang memiliki jumlah data pelatihan yang
memadai untuk kemudian diterapkan pada proyek target. Pendekatan ini bertujuan untuk
mengidentifikasi bagian kode atau modul dalam proyek target yang berpotensi mengandung
cacat perangkat lunak, meskipun tidak ada data pelatihan lokal yang tersedia. Dengan
demikian, CPDP memungkinkan prediksi cacat dilakukan secara efektif di proyek baru
dengan memanfaatkan pengetahuan dari proyek lain yang sudah terdokumentasi dengan
baik. Proses prediksi ini selanjutnya diikuti dengan evaluasi kinerja model menggunakan
metrik seperti F1-Score, Precision, Recall, Accuracy, dan AUC, sehingga dapat memberikan
gambaran menyeluruh mengenai kemampuan model dalam prediksi keberadaan cacat
serta membantu tim pengembang dalam menentukan prioritas pengujian dan perbaikan.

2.5. Evaluasi Model

Proses evaluasi model dilakukan terhadap data uji dengan memanfaatkan sejumlah
metrik kinerja, seperti Accruacy, AUC, Recall, Precision, dan F1-Score. Metrik-metrik tersebut
digunakan untuk menilai kemampuan prediktif model dalam membedakan antara kelas
cacat dan tidak cacat secara efektif [21]. Setiap metrik memberikan informasi spesifik
mengenai aspek berbeda dari kinerja model: mulai dari kemampuan dalam prediksi kasus
positif Recall, ketepatan hasil prediksi positif Precision, hingga keseluruhan keakuratan dan
keseimbangan prediksi F1-Score dan Accruacy. Dengan kombinasi metrik ini, dapat diperoleh
gambaran yang lebih komprehensif mengenai kemampuan model dalam mengidentifikasi
pola-pola kerusakan atau cacat perangkat lunak serta efektivitasnya dalam melakukan
Kklasifikasi pada data yang belum pernah diproses sebelumnya [22].

Evaluasi ini juga membantu mengidentifikasi kekuatan dan keterbatasan model dari
sisi stabilitas prediksi dan tingkat keakuratan yang konsisten. Hasil evaluasi empiris
terhadap model RF yang diuji pada berbagai dataset menunjukkan performa yang sangat
baik, di mana model mampu mencapai keseimbangan yang optimal antara nilai Recall dan
Precision. Hal ini menunjukkan bahwa model tidak hanya mampu prediksi sebagian besar
kasus cacat dengan benar, tetapi juga minim dalam menghasilkan prediksi positif palsu.
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Pendekatan ensemble learning yang menjadi dasar dari model ini memberikan kontribusi
signifikan terhadap stabilitas dan ketahanan model terhadap variasi data. Dengan demikian,
model tersebut menunjukkan kemampuan generalisasi yang kuat, sehingga layak diterapkan
pada berbagai skenario dan dataset yang berbeda dalam prediksi cacat perangkat lunak.

2.6. Tuning Model

Proses penyetelan tuning model dapat diartikan sebagai peningkatan hyperparameter
dilakukan menggunakan metode grid search untuk menemukan kombinasi optimal dari
parameter seperti max_depth, min_samples_split, n_estimators dan max_features [23][24]. Tujuan
utamanya adalah meningkatkan kinerja model dengan memilih nilai-nilai yang dapat
memaksimalkan accruacy prediksi. Selain itu, penyesuaian ini membantu mencegah terjadinya
overfitting, sehingga model tidak hanya baik dalam memprediksi data latih tetapi juga
memiliki kemampuan generalisasi yang kuat terhadap data baru [25][26]. Dengan
demikian, hyperparameter tuning menjadi langkah penting untuk meningkatkan keandalan
dan efektivitas model dalam berbagai skenario prediksi.

3. Hasil dan Pembahasan

Setiap eksperimen yang dilakukan akan ada hasil yang didokumentasikan, begitu juga
terjadi pada penelitian ini. Eksperimen dilakukan menggunakan library pycaret python,
sebuah library yang dengan sedikit code memberikan hasil yang kompleks. Dataset
AEEEM yang digunakan memberikan hasil yang variasi, proses hasil dibagi menjadi dua
tahap yaitu sebelum tuning dan setelah tuning.

3.1. Hasil Pengujian Sebelum menggunakan Hyperparameter Tuning

Pada tahap evaluasi model pertama, dilakukan pengujian terhadap 5 algoritma klasifikasi
pada skenario Cross-Project Defect Prediction (CPDP). Sebagaimana disajikan dalam Tabel 2.

Dari Tabel 2, hasil menunjukkan bahwa RF merupakan model dengan performa
terbaik, unggul di 9 dari 20 kombinasi sumber—target. Model ini menunjukkan konsistensi
tinggi dalam memprediksi cacat perangkat lunak antar proyek yang berbeda, seperti pada
kombinasi EQ—]JDT dan LC—EQ. CatBoost menjadi model kedua dengan kinerja stabil
dan mendekati RF, berhasil unggul di 6 kombinasi. Meskipun tidak selalu menjadi yang
terbaik, CatBoost tetap memberikan akurasi yang baik secara umum. LR juga menunjukkan
kompetitivitasnya dengan mencatatkan akurasi tertinggi di 4 kombinasi, meskipun cenderung
kalah dari RF dan CatBoost dalam sebagian besar kasus. Di sisi lain, KNN memiliki hasil
yang bervariasi dan cenderung rendah di banyak pasangan proyek. Sementara itu, SVM secara
konsisten menjadi model dengan performa terburuk tanpa sekali pun mencapai akurasi
tertinggi dalam setiap kombinasi. Beberapa pasangan proyek seperti LC—EQ, ML—EQ,
dan PDE—EQ menghasilkan akurasi tinggi untuk hampir semua model, menunjukkan
bahwa prediksi lintas proyek dapat efektif jika ada kesamaan atau karakteristik yang
relevan antar dataset. Namun, beberapa kombinasi seperti EQ — ML dan ML — LC
memberikan hasil yang sangat rendah untuk semua model, menunjukkan tantangan utama
dalam CPDP ketika proyek sumber dan target memiliki distribusi data yang sangat
berbeda. Dengan demikian, dapat disimpulkan bahwa RF merupakan model paling andal
sebelum proses tuning dilakukan, diikuti oleh CatBoost dan LR, sedangkan KNN dan SVM
kurang optimal dalam skenario CPDP ini.
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Tabel 2. Data Hasil Prediksi Sebelum menggunakan Hyperparameter Tuning Berdasarkan F1 Score

Source Target KNN SVM RF LR CatBoost
EQ JDT 0.3803 0.3605 0.4166 0.3794 0.4069
EQ LC 0.2241 0.1812 0.2850 0.2016 0.2582
EQ ML 0.2290 0.2209 0.2251 0.2165 0.2236
EQ PDE 0.2565 0.2734 0.2777 0.2753 0.2777
JDT EQ 0.3787 0.2930 0.3038 0.4000 0.3478
JDT LC 0.2369 0.3378 0.3956 0.3824 0.3883
JDT ML 0.2927 0.3162 0.2462 0.3458 0.2663
JDT PDE 0.2903 0.3493 0.3323 0.3484 0.3256
LC EQ 0.5198 0.4563 0.4333 0.4365 0.4023
LC JDT 0.3818 0.2739 0.5026 0.3527 0.5610
LC ML 0.2736 0.0145 0.3048 0.2078 0.3475
LC PDE 0.2759 0.1509 0.3122 0.2702 0.3158
ML EQ 0.4696 0.3256 0.4176 0.4314 0.4333
ML JDT 0.2843 0.4126 0.3691 0.3922 0.4396
ML LC 0.3153 0.2222 0.2056 0.1167 0.2955
ML PDE 0.3227 0.2773 0.3937 0.3284 0.3940
PDE EQ 0.4591 0.6622 0.4393 0.6931 0.4681
PDE JDT 0.4154 0.4476 0.4697 0.4090 0.5239
PDE LC 0.2973 0.2075 0.3762 0.3420 0.3956
PDE ML 0.2247 0.0728 0.2864 0.2439 0.3357

Dari Gambar 3 histogram di atas, dapat dilihat rata-rata FI-Score algoritma sebelum
tuning dalam konteks eksperimen CPDP, dengan F1-Score sebagai metrik evaluasi. Sumbu
horizontal mencantumkan 5 algoritma yang diuji, yaitu CatBoost, RF, LR, KNN dan SVM,
sementara sumbu vertikal menunjukkan FI-Score dari 0 hingga 0.6. Hasilnya, CatBoost
mencatat F1-Score tertinggi mendekati 0.4, diikuti RF dengan skor serupa, kemudian LR
dan KNN sekitar 0.35, serta SVM dengan skor terendah di atas 0.3. Grafik ini, yang
kemungkinan dihasilkan menggunakan PyCaret melalui fungsi compare_models, menunjukkan
bahwa CatBoost dan RF memiliki performa awal terbaik untuk memprediksi cacat pada
proyek target, meskipun perbedaan skor tidak terlalu besar, mengindikasikan tantangan
generalisasi akibat perbedaan distribusi data antara proyek sumber dan target. Hasil ini
dapat menjadi dasar untuk memilih model terbaik guna optimasi lebih lanjut atau
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3.2. Hasil Pengujian Setelah Menggunakan Hyperparamer Tuning

Pada tahap evaluasi model kedua, dilakukan pengujian terhadap 5 algoritma klasifikasi
pada skenario CPDP. Sebagaimana disajikan dalam Tabel 3.

Tabel 3. Data Hasil Prediksi Setelah menggunakan Hyperparameter Tuning Berdasarkan F1 Score

Source Target KNN SVM RF LR CatBoost
EQ JDT 0.3904 0.3967 0.4263 0.3794 0.4228
EQ LC 0.2295 0.2286 0.3174 0.2016 0.2311
EQ ML 0.2159 0.2127 0.2265 0.2165 0.2061
EQ PDE 0.2760 0.2642 0.3009 0.2753 0.2633
JDT EQ 0.3312 0.3977 0.3038 0.3593 0.3478
JDT LC 0.4094 0.3820 0.3956 0.4000 0.3883
JDT ML 0.3047 0.2688 0.2462 0.3213 0.2663
JDT PDE 0.2984 0.3955 0.3323 0.4021 0.3256
LC EQ 0.6134 0.4974 0.6017 0.4653 0.5652
LC JDT 0.4762 0.5224 0.5120 0.3297 0.5168
LC ML 0.2234 0.0215 0.3287 0.2039 0.3456
LC PDE 0.3546 0.1912 0.3532 0.2331 0.3501
ML EQ 0.4726 0.5776 0.5752 0.4314 0.4737
ML JDT 0.2972 0.4944 0.5300 0.3922 0.5274
ML LC 0.3318 0.2872 0.3256 0.1167 0.3333
ML PDE 0.3188 0.3716 0.3652 0.3284 0.4040

PDE EQ 0.5185 0.4947 0.5913 0.6931 0.6349
PDE JDT 0.5741 0.5448 0.5276 0.4090 0.4850
PDE LC 0.3494 0.3776 0.3377 0.3420 0.3529
PDE ML 0.3306 0.3058 0.3298 0.2439 0.3081

Proses hyperparameter tuning dilakukan, hasil menunjukan bahwa RF tetap menjadi
model dengan kinerja terbaik secara konsisten, unggul pada 9 dari total kombinasi prediksi.
Diikuti oleh CatBoost yang menunjukkan peningkatan signifikan dan berhasil menjadi
model terbaik pada 4 kombinasi. KNN dan SVM juga mengalami peningkatan performa,
masing-masing unggul di 3 dan 2 kombinasi. Sementara itu, LR mencatatkan hasil terbaik
pada 2 kombinasi. Hasil ini menunjukkan bahwa meskipun RF tetap dominan, proses
tuning memberikan dampak positif yang cukup berarti bagi CatBoost, KNN, dan SVM
dalam beberapa skenario prediksi.
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Dari Gambear 4 di atas, menunjukkan rata-rata F1-Score dari beberapa algoritma machine
learning setelah melalui proses hyperparameter tuning. Sumbu X menampilkan nama-nama
algoritma seperti CatBoost, RF, LR, KNN dan SVM, sedangkan sumbu Y menunjukkan
nilai FI1-Score sebagai metrik evaluasi. Nilai F1-Score berkisar antara 0 hingga 1, dengan
semakin tinggi nilainya menandakan performa model yang semakin baik. Berdasarkan
grafik tersebut, CatBoost memiliki performa terbaik dengan F1-Score sekitar 37%, diikuti
oleh RF 35%, LR 33%, KNN 0.32%, dan SVM dengan nilai terendah sekitar 0.30. Meskipun
selisih antar algoritma tidak terlalu besar, hasil ini menunjukkan bahwa CatBoost lebih
efektif dalam menangani masalah prediksi yang dianalisis, meskipun algoritma lain juga
masih memiliki potensi untuk digunakan tergantung pada konteks dan kebutuhan spesifiknya.

3.3. Perbandingan Hasil Prediksi Sebelum dan Sesudah Lakukan Hyperparameter
Tuning

Berdasarkan hasil prediksi, baik dengan optimasi hyperparameter tuning maupun tidak,
dapat disimpulkan dengan Tabel 4 di bawah ini:

Tabel 4. Perbandingan Hasil Prediksi Sebelum dan Sesudah Tuning

Models Sebelum Tuning Setelah Tuning Selisih

KNN 0.3264 0.3658 0.0394
SVM 0.2928 0.3567 0.0639
RF 0.3520 0.4033 0.0514
LR 0.3393 0.3337 (-) 0.0056
CatBoost 0.3762 0.3902 0.0140

Berdasarkan Tabel 4 di atas, memperlihatkan perbandingan performa beberapa model
machine learning sebelum dan setelah proses hyperparameter tuning, dengan menggunakan
F1-Score sebagai metrik evaluasi. Model-model yang dievaluasi meliputi KNN, SVM, RF,
LR, dan CatBoost. Terlihat bahwa tuning secara umum berhasil meningkatkan performa
keempat model, kecuali pada LR yang justru mengalami sedikit penurunan sebelum
tuning, CatBoost memiliki performa tertinggi dengan F1-Score 37,62% namun setelah
tuning, RF menjadi model terbaik dengan F1-Score mencapai 40,33%. Peningkatan paling
signifikan terjadi pada model SVM sebesar 06,39% diikuti oleh KNN sebesar 03,94%.
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Meskipun CatBoost tetap menunjukkan hasil yang baik, peningkatannya lebih kecil
dibandingkan model lainnya. Hasil ini menunjukkan bahwa proses hyperparameter tuning
efektif untuk meningkatkan akurasi model, meski tidak selalu berdampak positif bagi
semua algoritma.

4. Kesimpulan

Pendekatan ini bertujuan mengatasi keterbatasan data pelatihan dalam skenario
prediksi intra-proyek, serta membantu pengembang perangkat lunak dalam mengidentifikasi
modul-modul berisiko tinggi secara lebih efisien. Dengan menggunakan dataset AEEEM
yang terdiri dari 5 proyek open-source (EQ, ML, LC, JDT, PDE), penelitian ini membandingkan
performa 5 algoritma machine learning, yaitu Random RF, CatBoost, LR, KNN, dan SVM,
baik sebelum maupun setelah proses hyperparameter tuning. Proses eksperimen dilakukan
dalam skema one-to-many CPDP, di mana setiap proyek digunakan sebagai sumber dan
target secara bergantian. Diketahui bahwa sebelum dilakukan tuning hyperparameter, RF
menunjukkan performa terbaik dengan unggul di 9 dari 20 kombinasi prediksi, diikuti
oleh CatBoost yang memiliki hasil stabil dan mendekati RF dengan 6 kombinasi terbaik.
Logistic Regression (LR) masih kompetitif dalam beberapa kasus dengan 4 kombinasi
terbaik, sementara KNN menunjukkan hasil yang bervariasi dan cenderung rendah.
Adapun SVM, secara konsisten menjadi model dengan performa terburuk tanpa pernah
menjadi yang terbaik. Setelah proses tuning hyperparameter dilakukan, posisi RF tetap tak
tergoyahkan sebagai model terbaik dengan jumlah kombinasi terbaik yang sama, yaitu 9.
CatBoost mengalami peningkatan signifikan dengan bertambahnya kombinasi terbaik
menjadi 4. KNN dan SVM juga menunjukkan perbaikan dengan masing-masing unggul di
3 dan 2 kombinasi, sedangkan LR justru sedikit menurun dengan hanya unggul di 2
kombinasi. Secara keseluruhan, tuning hyperparameter memberikan dampak positif bagi
semua model kecuali LR, dengan peningkatan paling besar terjadi pada SVM sebesar 6,39%
berdasarkan rata-rata F1-Score, diikuti oleh RF sebesar 5,14%, dan KNN sebesar 3,94%.
Meskipun CatBoost tetap berada di posisi atas, peningkatannya relatif kecil, yaitu 1,4%.
Dalam analisis kombinasi sumber-target, beberapa pasangan proyek seperti LC — EQ, ML
— EQ, dan PDE — EQ menunjukkan performa tinggi untuk hampir semua model,
menandakan bahwa CPDP dapat efektif apabila terdapat kesamaan karakteristik antar
proyek. Sebaliknya, kombinasi seperti EQ — ML dan ML — LC memberikan hasil yang
rendah untuk semua model, menunjukkan adanya tantangan besar ketika distribusi data
antar proyek sangat berbeda. oleh sebab itu, penelitian selanjutnya dapat mempertimbangkan
penerapan teknik transfer learning atau domain adaptation seperti feature alignment,
adversarial training, atau instance weighting untuk mengurangi heterogenitas antar domain
proyek. Terakhir, integrasi metrik tidak tradisional seperti code churn, developer activity,
atau change history sebagai fitur tambahan dapat meningkatkan representasi modul dan
mendukung prediksi yang lebih akurat dalam skenario CPDP.
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