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Abstract 
Software defect prediction (SDP) is an important approach to improving software quality by 
identifying modules that are prone to errors early on. However, traditional intra-project 
defect prediction (IPDP) approaches are often not applicable to new projects due to limitations 
in labeled training data. To address these limitations, Cross-Project Defect Prediction (CPDP) 
emerges as an alternative solution by leveraging data from source projects to build prediction 
models for target projects. Nevertheless, CPDP faces major challenges in the form of data 
distribution mismatch and class imbalance across projects, which can significantly reduce 
prediction accuracy. This study aims to evaluate the performance of several machine learning 
algorithms in the CPDP scenario and analyze the impact of hyperparameter tuning on model 
performance. Using the AEEEM (Automated Software Engineering and Empirical Methods) 
dataset consisting of five open-source Eclipse projects Eclipse Apache Lucene (LC), Equinox 
(EQ), Eclipse JDT Core (JDT), Plugin Development Environment atau Eclipse PDE UI (PDE), 
Mylyn (ML), experiments were conducted in a one-to-many CPDP scheme, where each 
project alternately acted as the source and target project. Random Forest (RF), Category 
Boosting (CatBoost), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Support 
Vector Machine (SVM). Evaluations before and after the hyperparameter tuning process were 
conducted using the PyCaret library, with evaluation metrics including Accuracy, Area 
Under Curve (AUC), Recall, Precision, and F1-Score. The results show that RF consistently 
performs as the best model, outperforming in 9 out of 20 prediction combinations, both before 
and after tuning. CatBoost demonstrates stable performance and shows a significant 
improvement after tuning, while SVM, which initially performed the worst, shows the 
greatest improvement (6.39% increase in F1-Score), though it remains at the bottom. LR, on 
the other hand, shows a slight decline in performance after tuning. Further analysis revealed 
that combinations of projects with similar characteristics (such as LC → EQ, ML → EQ) 
produced high performance, while pairs with very different data distributions (such as EQ → 
ML, ML → LC) yielded low results, emphasizing the importance of domain similarity in 
CPDP. This study confirms that CPDP can be effective if the right models and project pairs 
are selected, and highlights the importance of hyperparameter optimization to improve 
model generalization. These findings provide practical guidance for researchers and 
practitioners in developing more reliable cross-project defect prediction systems, and open 
up avenues for further research such as the application of transfer learning, domain 
adaptation, and the integration of semantic or dynamic code features. 

Keywords: Cross-Project Defect Prediction (CPDP), Hyperparameter Tuning, Machine Learning, 
PyCaret, Data Distribution, Random Forest 
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Abstrak 
Prediksi cacat perangkat lunak (Software Defect Prediction/SDP) merupakan pendekatan 
penting untuk meningkatkan kualitas perangkat lunak dengan mengidentifikasi modul yang 
rentan terhadap kesalahan sejak dini. Namun, pendekatan tradisional berbasis intra-project 
defect prediction (IPDP) sering kali tidak dapat diterapkan pada proyek baru karena 
keterbatasan data pelatihan berlabel. Untuk mengatasi keterbatasan ini, Cross-Project Defect 
Prediction (CPDP) muncul sebagai solusi alternatif dengan memanfaatkan data dari proyek 
sumber untuk membangun model prediksi pada proyek target. Meskipun demikian, CPDP 
menghadapi tantangan utama berupa perbedaan distribusi data (data distribution mismatch) 
dan ketidakseimbangan kelas antar proyek, yang dapat menurunkan akurasi prediksi secara 
signifikan. Penelitian ini bertujuan untuk mengevaluasi kinerja beberapa algoritma machine 
learning dalam skenario CPDP, serta menganalisis dampak hyperparameter tuning terhadap 
performa model. Menggunakan dataset Automated Software Engineering and Empirical Methods 
(AEEEM) yang terdiri dari lima proyek open-source Eclipse Apache Lucene (LC), Equinox (EQ), 
Eclipse JDT Core (JDT), Plugin Development Environment atau Eclipse PDE UI (PDE), Mylyn 
(ML), eksperimen dilakukan dalam skema one-to-many CPDP, di mana setiap proyek secara 
bergantian berperan sebagai proyek sumber dan target. Random Forest (RF), Category Boosting 
(CatBoost), Logistic Regression (LR), K-Nearest Neighbors (KNN), dan Support Vector Machine (SVM). 
Evaluasi sebelum dan setelah proses hyperparameter tuning menggunakan library pycaret, 
dengan metrik evaluasi meliputi Accuracy, Area Under Curve (AUC), Recall, Precision, dan F1-
Score. Hasil menunjukkan bahwa RF konsisten menjadi model terbaik, unggul dalam 9 dari 
20 kombinasi prediksi, baik sebelum maupun setelah tuning. CatBoost menunjukkan kinerja 
stabil dan mengalami peningkatan signifikan setelah tuning, sementara SVM yang awalnya 
paling rendah menunjukkan perbaikan paling besar (6,39% peningkatan F1-Score), meskipun 
tetap berada pada posisi bawah. LR justru sedikit menurun performanya setelah tuning. 
Analisis lebih lanjut mengungkap bahwa kombinasi proyek dengan karakteristik serupa 
(seperti LC → EQ, ML → EQ) menghasilkan performa tinggi, sedangkan pasangan dengan 
distribusi data sangat berbeda (seperti EQ → ML, ML → LC) memberikan hasil rendah, 
menegaskan pentingnya kesamaan domain dalam CPDP. Studi ini menegaskan bahwa CPDP 
dapat efektif jika dipilih model dan pasangan proyek yang tepat, serta menyoroti pentingnya 
optimisasi hiperparameter untuk meningkatkan generalisasi model. Temuan ini memberikan 
panduan praktis bagi peneliti dan praktisi dalam mengembangkan sistem prediksi cacat 
lintas proyek yang lebih andal, serta membuka arah penelitian lanjutan seperti penerapan 
transfer learning, domain adaptation, dan integrasi fitur semantik atau dinamik kode. 

Kata kunci: Cross-Project Defect Prediction (CPDP), Hyperparameter Tuning, Machine Learning, 
PyCaret, Distribusi Data, Random Forest 

1.  Pendahuluan  
Peningkatan kualitas perangkat lunak merupakan salah satu aspek penting dalam 

siklus pengembangan sistem. Salah satu tantangan utama dalam hal ini adalah prediksi 
cacat (defect prediction) atau bug yang muncul selama proses pengembangan dan penggunaan 
aplikasi. Cacat perangkat lunak dapat menyebabkan gangguan fungsional, penurunan 
kualitas layanan pengguna (user experience), serta meningkatnya biaya pemeliharaan [1]. 
Oleh karena itu, dibutuhkan pendekatan otomatis juga efektif dalam mengidentifikasi 
modul-modul yang rentan terhadap cacat sebelum tahap produksi [2]. Biaya pengujian 
perangkat lunak mencapai hampir separuh dari total biaya pengembangan, pengelolaan 
sumber daya yang terbatas menjadi sangat krusial. Dalam hal ini, penerapan model 
Software Defect Prediction (SDP) dapat membantu mengidentifikasi modul-modul yang 
paling berisiko mengalami cacat sebelum pengujian dimulai [3]. Dengan demikian, alokasi 
sumber daya untuk pengujian setiap modul dapat dioptimalkan. 
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Dalam beberapa tahun terakhir, penerapan teknik machine learning telah menunjukkan 
potensi yang signifikan dalam bidang prediksi SDP. Pendekatan berbasis model prediktif 
memungkinkan identifikasi modul yang bermasalah dengan memanfaatkan fitur-fitur 
kode seperti kompleksitas, ukuran file, dan jumlah revisi [4][5]. Namun, mayoritas 
pendekatan tersebut dilakukan secara intra-project defect prediction (IPDP), sehingga kurang 
efektif ketika diterapkan pada proyek baru dengan data pelatihan yang tidak tersedia. 

Cross-Project Defect Prediction (CPDP) mengatasi keterbatasan data yang sering dihadapi 
dalam model SDP tradisional. Namun, akurasi prediksinya masih belum optimal dalam 
penerapan praktis karena adanya perbedaan distribusi data antara proyek sumber dan 
proyek target [6][7]. Selain itu, kinerja CPDP juga dipengaruhi oleh masalah dimensi tinggi 
pada fitur-fitur dalam dataset proyek sumber dan target, di mana beberapa fitur mungkin 
tidak relevan atau mengandung outlier [8][9]. 

Untuk mengatasi keterbatasan tersebut, penelitian ini mengusung pendekatan CPDD, 
di mana model pelatihan berasal dari proyek lain namun tetap memberikan performa 
prediksi yang baik. Dengan menggunakan dataset Automated Software Engineering and 
Empirical Methods (AEEEM) dan memanfaatkan library pycaret untuk mempercepat eksplorasi 
dan evaluasi model, penelitian ini bertujuan untuk mengembangkan model SDP yang 
dapat digunakan pada proyek yang berbeda dari proyek tempat data pelatihan dikumpulkan. 
Model klasifikasi dalam machine learning seperti Random Forest (RF), K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), Logistic Regression (LR) dan CatBoost Classifier (CatBoost) 
merupakan model yang digunakan dalam penelitian ini yang mempunyai kemampuan 
baik dalam menangani klasifikasi dengan data tidak seimbang dan mampu memberikan 
hasil yang stabil [10][11]. 

Penelitian ini juga menerapkan library pycaret mulai dari preprocessing hingga menemukan 
hasil, prediksi dilakukan dengan membandingkan data sebelum tuning dan sesudah 
tuning. Metodologi ini mencakup langkah-langkah analisis data yang komprehensif,  
penggunaan  teknik-teknik  machine learning  atau  kecerdasan  buatan  yang  canggih,  serta 
evaluasi  terhadap  berbagai  parameter  yang  relevan. Selain itu, akan dilakukan juga  validasi  
terhadap  model klasifikasi  yang dikembangkan untuk  memastikan akurasi dan keandalannya 
dalam mengidentifikasi risiko SDP dengan tingkat kepercayaan yang tinggi [12]. 

Hasil dari penelitian ini dapat memberikan kontribusi  yang signifikan  dalam upaya  
prediksi defect atau non-defect pada perangkat lunak. Informasi yang diperoleh dari model  
klasifikasi yang dikembangkan dapat dimanfaatkan oleh para pengembang software 
untuk melakukan tindakan perbaikan yang tepat waktu dan  tepat  sasaran  guna  meningkatkan  
efisien waktu pembuatan perangkat lunak. 

Selain itu, hasil penelitian ini juga diharapkan dapat menjadi langkah awal bagi  
pengembangan lebih lanjut terkait SDP secara real-time atau berkelanjutan, sehingga  
upaya dalam pencegahan dan perbaikan dapat dilakukan secara proaktif dan efisien.  
Dengan demikian, penelitian ini diharapkan dapat memberikan manfaat yang nyata 
dalam meningkatkan kualitas sebuah perangkat lunak. 

2.  Metode Penelitian 
Diagram yang ditunjukan pada Gambar 1. Sebuah proses yang dilakukan pada 

penelitian melalui beberapa tahapan terdiri dari preprocessing, pembuatan model hingga 
pengujian model dengan proyek lain menggunakan library pycaret. 



 
 
Techné Jurnal Ilmiah Elektroteknika Vol. 24 No. 2 Oktober 2025 Hal 163 – 176 

166 

 
Gambar 1. Metode Penelitian 

Metode yang diusulkan untuk prediksi cacat perangkat lunak pada dataset AEEEM 
yang terdiri dari lima proyek, diantaranya adalah EQ, ML, LC, JDT dan PDE. Pendekatan 
CPDP yang diterapkan merupakan one to many, artinya dari 5 proyek pada dataset AEEEM 
masing-masing saling melakukan testing. Contohnya proyek EQ akan dilakukan tes 
dengan proyek JDT, ML, LC serta PDE dan di ulang kembali proyek JDT akan dilakukan 
test dengan proyek EQ, ML, LC serta PDE dan terus sampai proyek akhir. Studi ini 
bertujuan untuk menilai performa berbagai model machine learning dalam melakukan 
prediksi cacat perangkat lunak. Evaluasi dilakukan menggunakan sejumlah metrik seperti 
Accruacy, AUC, Recall, Presisi, dan F1-Score untuk memastikan hasil prediksi yang tepat 
dan konsisten di berbagai proyek perangkat lunak [13]. Datasets dan code tersedia secara 
publik https://github.com/rianhidyt/cpdp-aeeem.  

2.1.  Dataset AEEEM 
Dataset ini dikompilasi oleh Marco D’Ambros dan rekan-rekannya, diterbitkan dalam 

studi [6][14]. AEEEM berisi data dari 5 proyek perangkat lunak open-source yang 
dikembangkan dibawah naungan Eclipse Fondation dengan total 5.371 data, mencakup: 
Apache Lucene (LC) merupakan sebuah perpustakaan pencarian teks berbasis java, Equinox 
(EQ) salah satu komponen framework eclipse yang bertindak sebagai waktu ketika program 
sedang berjalan, Eclipse JDT Core (JDT) merupakan alat pengembangan java dalam eclipse 
tools, Plugin Development Environment (PDE) atau Eclipse PDE UI merupakan alat antarmuka 
(User Interface) pengguna untuk pengembangan plugin eclipse dan Mylyn (ML) adalah alat 
manajemen tugas dan produktivitas yang menghubungkan sistem pelacakan bug seperti 
bugzilla ke dalam IDE Eclipse. Format yang digunakan pada dataset AEEEM adalah 
Attribute-Relation File Format (ARFF), mendukung dengan alat pengolahan machine learning 
[14][15]. Atribut dalam setiap dataset mencakup 61 metrik diantaranya terdapat kolom 
class berisi label sebagai defect atau non-defect dengan jumlah persentase defect yang bervariasi 
antara proyek. Variasi jumlah entries data setiap proyek ditunjukan pada Tabel 1 dan Tabel 2 
berikut. 

Tabel 1. Rincian Dataset AEEEM yang digunakan 
Dataset Jumlah Modul Jumlah Fitur Defect Non-Defect Rasio Defect 

LC 691 61 64 627 9.26% 
EQ 324 61 129 195 39.81% 
JDT 997 61 206 791 20.66% 
PDE 1862 61 245 1617 13.16% 
ML 1497 61 209 1288 13.96% 

 
  

https://github.com/rianhidyt/cpdp-aeeem
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Tabel 2. Rincian Dataset AEEEM yang digunakan 
Aspek Deksripsi 
Jumlah Dataset 5 (LC, EQ, JDT, PDE, ML) 
Total Jumlah Data (Entries) 5.371 
Jumlah Kolom (Fitur + Target) 62 (termasuk 61 fitur + 1 kolom target class) 
Kolom Target class (menunjukan status kecacatan modul) 
Kode pada kolom class b’0’ = Non=defect, b’1’ = Defect 
Jumlah Modul Cacat (Defect) 853 
Jumlah Modul Non-Cacat (Non-Defect) 4.518 
Rasio Cacat 15.88% (853 / 5.371) 
Tipe Data Utama float64 (numerik) 
Missing Value diperiksa – tidak ditemukan atau minimal (asumsi 

data bersih) 
Langkah Pra-Pemrosesan 1. Pengecekan struktur dataset (jenis data, entri, 

atribut, tipe data) 
2. Pengecekan nilai hilang (missing value) 
3. Normalisasi data untuk mengatasi 

ketidakseimbangan kelas 
Tools Library Python, PyCaret (untuk otomatisasi eksperimen dan 

pra-pemrosesan) 
Tujuan Normalisasi meningkatkan kinerja model dengan mengurangi 

dampak ketidakseimbangan data dan perbedaan 
skala fitur 

 
Gambar 2. Distribusi atribut class defect dan non-defect 

2.2.  Preprocessing 
Preprocessing dilakukan untuk memastikan data sudah bersih dari missing value dengan 

dilakukan imputasi data menggunakan simpleimputer. Selanjutnya dilakukan cek data 
kolom apakah ada yang hilang nilai (NaN) atau ada nilai yang belum numerik karena akan 
menggangu proses modelling menjadi kurang baik[16]. Setelah penanganan nilai selesai 
tahap berikutnya setup library pycaret dengan konfirgurasi pemilihan target kolom class, 
tipe target binary, transformed data dari 691 menjadi 1080 bertujuan meningkatkan kualitas 
data secara keseluruhan, pembagian data train dan test dengan proporsi 80/20%. Mengaktifkan 
fitur fix imbalance dengan metode Synthetic Minority Over-sampling Technique (SMOTE) dan 
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fitur normalized dengan metode zscore bertujuan menghilangkan duplikasi atau data yang 
double. Terakhir menerapkan StratifiedKFold generator untuk mendukung validasi silang 
meningkatkan generalisasi dan mencegah overfitting [17]. 

2.3. Run Model dan Create Model 
Dalam pycaret, fungsi create_model dan best_model (melalui compare_models) memiliki 

peran penting dalam alur kerja pembangunan model machine learning. Fungsi create_model 
bertujuan untuk membuat dan melatih model spesifik, seperti RF, KNN, SVM, LR dan 
CatBoost menggunakan data yang telah disiapkan melalui setup(). Fungsi ini memungkinkan 
evaluasi awal performa model melalui validasi silang, seperti StratifiedKFold, dan memberikan 
fleksibilitas untuk eksperimen dengan hyperparameter atau skema validasi [18][19]. Di sisi 
lain, best_model yang dihasilkan dari compare_models bertujuan untuk membandingkan berbagai 
algoritma secara otomatis dan memilih model dengan performa terbaik berdasarkan metrik 
tertentu, seperti akurasi atau F1-Score. Model terbaik ini kemudian dapat digunakan untuk 
prediksi, tuning lebih lanjut, atau deployment. Keduanya saling melengkapi: create_model 
ideal untuk analisis mendalam pada satu model, sementara best model mempercepat proses 
pemilihan model optimal dalam waktu singkat [20]. 

2.4. Prediksi Data 
Proses prediksi data dalam eksperimen CPDP dilakukan dengan memanfaatkan 

model yang dilatih pada data proyek sumber yang memiliki jumlah data pelatihan yang 
memadai untuk kemudian diterapkan pada proyek target. Pendekatan ini bertujuan untuk 
mengidentifikasi bagian kode atau modul dalam proyek target yang berpotensi mengandung 
cacat perangkat lunak, meskipun tidak ada data pelatihan lokal yang tersedia. Dengan 
demikian, CPDP memungkinkan prediksi cacat dilakukan secara efektif di proyek baru 
dengan memanfaatkan pengetahuan dari proyek lain yang sudah terdokumentasi dengan 
baik. Proses prediksi ini selanjutnya diikuti dengan evaluasi kinerja model menggunakan 
metrik seperti F1-Score, Precision, Recall, Accuracy, dan AUC, sehingga dapat memberikan 
gambaran menyeluruh mengenai kemampuan model dalam prediksi keberadaan cacat 
serta membantu tim pengembang dalam menentukan prioritas pengujian dan perbaikan. 

2.5. Evaluasi Model 
Proses evaluasi model dilakukan terhadap data uji dengan memanfaatkan sejumlah 

metrik kinerja, seperti Accruacy, AUC, Recall, Precision, dan F1-Score. Metrik-metrik tersebut 
digunakan untuk menilai kemampuan prediktif model dalam membedakan antara kelas 
cacat dan tidak cacat secara efektif [21]. Setiap metrik memberikan informasi spesifik 
mengenai aspek berbeda dari kinerja model: mulai dari kemampuan dalam prediksi kasus 
positif Recall, ketepatan hasil prediksi positif Precision, hingga keseluruhan keakuratan dan 
keseimbangan prediksi F1-Score dan Accruacy. Dengan kombinasi metrik ini, dapat diperoleh 
gambaran yang lebih komprehensif mengenai kemampuan model dalam mengidentifikasi 
pola-pola kerusakan atau cacat perangkat lunak serta efektivitasnya dalam melakukan 
klasifikasi pada data yang belum pernah diproses sebelumnya [22]. 

Evaluasi ini juga membantu mengidentifikasi kekuatan dan keterbatasan model dari 
sisi stabilitas prediksi dan tingkat keakuratan yang konsisten. Hasil evaluasi empiris 
terhadap model RF yang diuji pada berbagai dataset menunjukkan performa yang sangat 
baik, di mana model mampu mencapai keseimbangan yang optimal antara nilai Recall dan 
Precision. Hal ini menunjukkan bahwa model tidak hanya mampu prediksi sebagian besar 
kasus cacat dengan benar, tetapi juga minim dalam menghasilkan prediksi positif palsu. 
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Pendekatan ensemble learning yang menjadi dasar dari model ini memberikan kontribusi 
signifikan terhadap stabilitas dan ketahanan model terhadap variasi data. Dengan demikian, 
model tersebut menunjukkan kemampuan generalisasi yang kuat, sehingga layak diterapkan 
pada berbagai skenario dan dataset yang berbeda dalam prediksi cacat perangkat lunak.   

2.6. Tuning Model 
Proses penyetelan tuning model dapat diartikan sebagai peningkatan hyperparameter 

dilakukan menggunakan metode grid search untuk menemukan kombinasi optimal dari 
parameter seperti max_depth, min_samples_split, n_estimators dan max_features [23][24]. Tujuan 
utamanya adalah meningkatkan kinerja model dengan memilih nilai-nilai yang dapat 
memaksimalkan accruacy prediksi. Selain itu, penyesuaian ini membantu mencegah terjadinya 
overfitting, sehingga model tidak hanya baik dalam memprediksi data latih tetapi juga 
memiliki kemampuan generalisasi yang kuat terhadap data baru [25][26]. Dengan 
demikian, hyperparameter tuning menjadi langkah penting untuk meningkatkan keandalan 
dan efektivitas model dalam berbagai skenario prediksi.   

3.  Hasil dan Pembahasan 
Setiap eksperimen yang dilakukan akan ada hasil yang didokumentasikan, begitu juga 

terjadi pada penelitian ini. Eksperimen dilakukan menggunakan library pycaret python, 
sebuah library yang dengan sedikit code memberikan hasil yang kompleks. Dataset 
AEEEM yang digunakan memberikan hasil yang variasi, proses hasil dibagi menjadi dua 
tahap yaitu sebelum tuning dan setelah tuning. 

3.1. Hasil Pengujian Sebelum menggunakan Hyperparameter Tuning 
Pada tahap evaluasi model pertama, dilakukan pengujian terhadap 5 algoritma klasifikasi 

pada skenario Cross-Project Defect Prediction (CPDP). Sebagaimana disajikan dalam Tabel 2. 
Dari Tabel 2, hasil menunjukkan bahwa RF merupakan model dengan performa 

terbaik, unggul di 9 dari 20 kombinasi sumber–target. Model ini menunjukkan konsistensi 
tinggi dalam memprediksi cacat perangkat lunak antar proyek yang berbeda, seperti pada 
kombinasi EQ→JDT dan LC→EQ. CatBoost menjadi model kedua dengan kinerja stabil 
dan mendekati RF, berhasil unggul di 6 kombinasi. Meskipun tidak selalu menjadi yang 
terbaik, CatBoost tetap memberikan akurasi yang baik secara umum. LR juga menunjukkan 
kompetitivitasnya dengan mencatatkan akurasi tertinggi di 4 kombinasi, meskipun cenderung 
kalah dari RF dan CatBoost dalam sebagian besar kasus. Di sisi lain, KNN memiliki hasil 
yang bervariasi dan cenderung rendah di banyak pasangan proyek. Sementara itu, SVM secara 
konsisten menjadi model dengan performa terburuk tanpa sekali pun mencapai akurasi 
tertinggi dalam setiap kombinasi. Beberapa pasangan proyek seperti LC→EQ, ML→EQ, 
dan PDE→EQ menghasilkan akurasi tinggi untuk hampir semua model, menunjukkan 
bahwa prediksi lintas proyek dapat efektif jika ada kesamaan atau karakteristik yang 
relevan antar dataset. Namun, beberapa kombinasi seperti EQ → ML dan ML → LC 
memberikan hasil yang sangat rendah untuk semua model, menunjukkan tantangan utama 
dalam CPDP ketika proyek sumber dan target memiliki distribusi data yang sangat 
berbeda. Dengan demikian, dapat disimpulkan bahwa RF merupakan model paling andal 
sebelum proses tuning dilakukan, diikuti oleh CatBoost dan LR, sedangkan KNN dan SVM 
kurang optimal dalam skenario CPDP ini. 
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Tabel 2. Data Hasil Prediksi Sebelum menggunakan Hyperparameter Tuning Berdasarkan F1 Score 

Source Target KNN SVM RF LR CatBoost 
EQ JDT 0.3803 0.3605 0.4166 0.3794 0.4069 
EQ LC 0.2241 0.1812 0.2850 0.2016 0.2582 
EQ ML 0.2290 0.2209 0.2251 0.2165 0.2236 
EQ PDE 0.2565 0.2734 0.2777 0.2753 0.2777 
JDT EQ 0.3787 0.2930 0.3038 0.4000 0.3478 
JDT LC 0.2369 0.3378 0.3956 0.3824 0.3883 
JDT ML 0.2927 0.3162 0.2462 0.3458 0.2663 
JDT PDE 0.2903 0.3493 0.3323 0.3484 0.3256 
LC EQ 0.5198 0.4563 0.4333 0.4365 0.4023 
LC JDT 0.3818 0.2739 0.5026 0.3527 0.5610 
LC ML 0.2736 0.0145 0.3048 0.2078 0.3475 
LC PDE 0.2759 0.1509 0.3122 0.2702 0.3158 
ML EQ 0.4696 0.3256 0.4176 0.4314 0.4333 
ML JDT 0.2843 0.4126 0.3691 0.3922 0.4396 
ML LC 0.3153 0.2222 0.2056 0.1167 0.2955 
ML PDE 0.3227 0.2773 0.3937 0.3284 0.3940 
PDE EQ 0.4591 0.6622 0.4393 0.6931 0.4681 
PDE JDT 0.4154 0.4476 0.4697 0.4090 0.5239 
PDE LC 0.2973 0.2075 0.3762 0.3420 0.3956 
PDE ML 0.2247 0.0728 0.2864 0.2439 0.3357 

 
Gambar 3. Algoritma sebelum menggunakan Tuning 

Dari Gambar 3 histogram di atas, dapat dilihat rata-rata F1-Score algoritma sebelum 
tuning dalam konteks eksperimen CPDP, dengan F1-Score sebagai metrik evaluasi. Sumbu 
horizontal mencantumkan 5 algoritma yang diuji, yaitu CatBoost, RF, LR, KNN dan SVM, 
sementara sumbu vertikal menunjukkan F1-Score dari 0 hingga 0.6. Hasilnya, CatBoost 
mencatat F1-Score tertinggi mendekati 0.4, diikuti RF dengan skor serupa, kemudian LR 
dan KNN sekitar 0.35, serta SVM dengan skor terendah di atas 0.3. Grafik ini, yang 
kemungkinan dihasilkan menggunakan PyCaret melalui fungsi compare_models, menunjukkan 
bahwa CatBoost dan RF memiliki performa awal terbaik untuk memprediksi cacat pada 
proyek target, meskipun perbedaan skor tidak terlalu besar, mengindikasikan tantangan 
generalisasi akibat perbedaan distribusi data antara proyek sumber dan target. Hasil ini 
dapat menjadi dasar untuk memilih model terbaik guna optimasi lebih lanjut atau 
penerapan pada proyek target. 
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3.2. Hasil Pengujian Setelah Menggunakan Hyperparamer Tuning 
Pada tahap evaluasi model kedua, dilakukan pengujian terhadap 5 algoritma klasifikasi 

pada skenario CPDP. Sebagaimana disajikan dalam Tabel 3. 

Tabel 3. Data Hasil Prediksi Setelah menggunakan Hyperparameter Tuning Berdasarkan F1 Score 

Source Target KNN SVM RF LR CatBoost 

EQ JDT 0.3904 0.3967 0.4263 0.3794 0.4228 

EQ LC 0.2295 0.2286 0.3174 0.2016 0.2311 

EQ ML 0.2159 0.2127 0.2265 0.2165 0.2061 

EQ PDE 0.2760 0.2642 0.3009 0.2753 0.2633 

JDT EQ 0.3312 0.3977 0.3038 0.3593 0.3478 

JDT LC 0.4094 0.3820 0.3956 0.4000 0.3883 

JDT ML 0.3047 0.2688 0.2462 0.3213 0.2663 

JDT PDE 0.2984 0.3955 0.3323 0.4021 0.3256 

LC EQ 0.6134 0.4974 0.6017 0.4653 0.5652 

LC JDT 0.4762 0.5224 0.5120 0.3297 0.5168 

LC ML 0.2234 0.0215 0.3287 0.2039 0.3456 

LC PDE 0.3546 0.1912 0.3532 0.2331 0.3501 

ML EQ 0.4726 0.5776 0.5752 0.4314 0.4737 

ML JDT 0.2972 0.4944 0.5300 0.3922 0.5274 

ML LC 0.3318 0.2872 0.3256 0.1167 0.3333 

ML PDE 0.3188 0.3716 0.3652 0.3284 0.4040 

PDE EQ 0.5185 0.4947 0.5913 0.6931 0.6349 

PDE JDT 0.5741 0.5448 0.5276 0.4090 0.4850 

PDE LC 0.3494 0.3776 0.3377 0.3420 0.3529 

PDE ML 0.3306 0.3058 0.3298 0.2439 0.3081 

 
Proses hyperparameter tuning dilakukan, hasil menunjukan bahwa RF tetap menjadi 

model dengan kinerja terbaik secara konsisten, unggul pada 9 dari total kombinasi prediksi. 
Diikuti oleh CatBoost yang menunjukkan peningkatan signifikan dan berhasil menjadi 
model terbaik pada 4 kombinasi. KNN dan SVM juga mengalami peningkatan performa, 
masing-masing unggul di 3 dan 2 kombinasi. Sementara itu, LR mencatatkan hasil terbaik 
pada 2 kombinasi. Hasil ini menunjukkan bahwa meskipun RF tetap dominan, proses 
tuning memberikan dampak positif yang cukup berarti bagi CatBoost, KNN, dan SVM 
dalam beberapa skenario prediksi. 
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Gambar 4. Algoritma Setelah di Tuning 

Dari Gambar 4 di atas, menunjukkan rata-rata F1-Score dari beberapa algoritma machine 
learning setelah melalui proses hyperparameter tuning. Sumbu X menampilkan nama-nama 
algoritma seperti CatBoost, RF, LR, KNN dan SVM, sedangkan sumbu Y menunjukkan 
nilai F1-Score sebagai metrik evaluasi. Nilai F1-Score berkisar antara 0 hingga 1, dengan 
semakin tinggi nilainya menandakan performa model yang semakin baik. Berdasarkan 
grafik tersebut, CatBoost memiliki performa terbaik dengan F1-Score sekitar 37%, diikuti 
oleh RF 35%, LR 33%, KNN 0.32%, dan SVM dengan nilai terendah sekitar 0.30. Meskipun 
selisih antar algoritma tidak terlalu besar, hasil ini menunjukkan bahwa CatBoost lebih 
efektif dalam menangani masalah prediksi yang dianalisis, meskipun algoritma lain juga 
masih memiliki potensi untuk digunakan tergantung pada konteks dan kebutuhan spesifiknya. 

3.3. Perbandingan Hasil Prediksi Sebelum dan Sesudah Lakukan Hyperparameter 
Tuning 

Berdasarkan hasil prediksi, baik dengan optimasi hyperparameter tuning maupun tidak, 
dapat disimpulkan dengan Tabel 4 di bawah ini: 

Tabel 4. Perbandingan Hasil Prediksi Sebelum dan Sesudah Tuning 

Models Sebelum Tuning Setelah Tuning Selisih 
KNN 0.3264 0.3658        0.0394 
SVM 0.2928           0.3567        0.0639 
RF 0.3520           0.4033        0.0514 
LR 0.3393           0.3337       (-) 0.0056 

CatBoost 0.3762           0.3902        0.0140 
 
Berdasarkan Tabel 4 di atas, memperlihatkan perbandingan performa beberapa model 

machine learning sebelum dan setelah proses hyperparameter tuning, dengan menggunakan 
F1-Score sebagai metrik evaluasi. Model-model yang dievaluasi meliputi KNN, SVM, RF, 
LR, dan CatBoost. Terlihat bahwa tuning secara umum berhasil meningkatkan performa 
keempat model, kecuali pada LR yang justru mengalami sedikit penurunan sebelum 
tuning, CatBoost memiliki performa tertinggi dengan F1-Score 37,62% namun setelah 
tuning, RF menjadi model terbaik dengan F1-Score mencapai 40,33%. Peningkatan paling 
signifikan terjadi pada model SVM sebesar 06,39% diikuti oleh KNN sebesar 03,94%. 
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Meskipun CatBoost tetap menunjukkan hasil yang baik, peningkatannya lebih kecil 
dibandingkan model lainnya. Hasil ini menunjukkan bahwa proses hyperparameter tuning 
efektif untuk meningkatkan akurasi model, meski tidak selalu berdampak positif bagi 
semua algoritma. 

4. Kesimpulan 
Pendekatan ini bertujuan mengatasi keterbatasan data pelatihan dalam skenario 

prediksi intra-proyek, serta membantu pengembang perangkat lunak dalam mengidentifikasi 
modul-modul berisiko tinggi secara lebih efisien. Dengan menggunakan dataset AEEEM 
yang terdiri dari 5 proyek open-source (EQ, ML, LC, JDT, PDE), penelitian ini membandingkan 
performa 5 algoritma machine learning, yaitu Random RF, CatBoost, LR, KNN, dan SVM, 
baik sebelum maupun setelah proses hyperparameter tuning. Proses eksperimen dilakukan 
dalam skema one-to-many CPDP, di mana setiap proyek digunakan sebagai sumber dan 
target secara bergantian. Diketahui bahwa sebelum dilakukan tuning hyperparameter, RF 
menunjukkan performa terbaik dengan unggul di 9 dari 20 kombinasi prediksi, diikuti 
oleh CatBoost yang memiliki hasil stabil dan mendekati RF dengan 6 kombinasi terbaik. 
Logistic Regression (LR) masih kompetitif dalam beberapa kasus dengan 4 kombinasi 
terbaik, sementara KNN menunjukkan hasil yang bervariasi dan cenderung rendah. 
Adapun SVM, secara konsisten menjadi model dengan performa terburuk tanpa pernah 
menjadi yang terbaik. Setelah proses tuning hyperparameter dilakukan, posisi RF tetap tak 
tergoyahkan sebagai model terbaik dengan jumlah kombinasi terbaik yang sama, yaitu 9. 
CatBoost mengalami peningkatan signifikan dengan bertambahnya kombinasi terbaik 
menjadi 4. KNN dan SVM juga menunjukkan perbaikan dengan masing-masing unggul di 
3 dan 2 kombinasi, sedangkan LR justru sedikit menurun dengan hanya unggul di 2 
kombinasi. Secara keseluruhan, tuning hyperparameter memberikan dampak positif bagi 
semua model kecuali LR, dengan peningkatan paling besar terjadi pada SVM sebesar 6,39% 
berdasarkan rata-rata F1-Score, diikuti oleh RF sebesar 5,14%, dan KNN sebesar 3,94%. 
Meskipun CatBoost tetap berada di posisi atas, peningkatannya relatif kecil, yaitu 1,4%. 
Dalam analisis kombinasi sumber–target, beberapa pasangan proyek seperti LC → EQ, ML 
→ EQ, dan PDE → EQ menunjukkan performa tinggi untuk hampir semua model, 
menandakan bahwa CPDP dapat efektif apabila terdapat kesamaan karakteristik antar 
proyek. Sebaliknya, kombinasi seperti EQ → ML dan ML → LC memberikan hasil yang 
rendah untuk semua model, menunjukkan adanya tantangan besar ketika distribusi data 
antar proyek sangat berbeda. oleh sebab itu, penelitian selanjutnya dapat mempertimbangkan 
penerapan teknik transfer learning atau domain adaptation seperti feature alignment, 
adversarial training, atau instance weighting untuk mengurangi heterogenitas antar domain 
proyek. Terakhir, integrasi metrik tidak tradisional seperti code churn, developer activity, 
atau change history sebagai fitur tambahan dapat meningkatkan representasi modul dan 
mendukung prediksi yang lebih akurat dalam skenario CPDP. 
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